diff --git a/ronkathon/APACHE2 b/APACHE2 similarity index 100% rename from ronkathon/APACHE2 rename to APACHE2 diff --git a/Cargo.toml b/Cargo.toml index 04dccd59..8d944435 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -1,4 +1,12 @@ -[workspace] -resolver="2" +[package] +authors =["Pluto Authors"] +description="""ronkathon""" +edition ="2021" +license ="Apache2.0 OR MIT" +name ="ronkathon" +repository ="https://github.com/thor314/ronkathon" +version ="0.1.0" -members=["ronkathon", "field", "util"] +[dependencies] +anyhow ="1.0" +p3-field = { version = "0.1.0", git = "https://github.com/Plonky3/Plonky3.git"} \ No newline at end of file diff --git a/ronkathon/LICENSE-MIT b/LICENSE-MIT similarity index 100% rename from ronkathon/LICENSE-MIT rename to LICENSE-MIT diff --git a/ronkathon/README.md b/README.md similarity index 100% rename from ronkathon/README.md rename to README.md diff --git a/field/Cargo.toml b/field/Cargo.toml deleted file mode 100644 index 33faa451..00000000 --- a/field/Cargo.toml +++ /dev/null @@ -1,14 +0,0 @@ -[package] -name = "p3-field" -version = "0.1.0" -edition = "2021" -license = "MIT OR Apache-2.0" - -[dependencies] -p3-util = { path = "../util" } -num-bigint = { version = "0.4.3", default-features = false } -num-traits = { version = "0.2.18", default-features = false } - -itertools = "0.12.0" -rand = "0.8.5" -serde = { version = "1.0", default-features = false, features = ["derive"] } diff --git a/field/src/array.rs b/field/src/array.rs deleted file mode 100644 index 614eb4be..00000000 --- a/field/src/array.rs +++ /dev/null @@ -1,148 +0,0 @@ -use core::{ - array, - iter::{Product, Sum}, - ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}, -}; - -use crate::{AbstractField, Field}; - -#[derive(Clone, Copy, Debug, Eq, PartialEq)] -pub struct FieldArray(pub [F; N]); - -impl Default for FieldArray { - fn default() -> Self { Self::zero() } -} - -impl From for FieldArray { - fn from(val: F) -> Self { [val; N].into() } -} - -impl From<[F; N]> for FieldArray { - fn from(arr: [F; N]) -> Self { Self(arr) } -} - -impl AbstractField for FieldArray { - type F = F; - - fn zero() -> Self { FieldArray([F::zero(); N]) } - - fn one() -> Self { FieldArray([F::one(); N]) } - - fn two() -> Self { FieldArray([F::two(); N]) } - - fn neg_one() -> Self { FieldArray([F::neg_one(); N]) } - - #[inline] - fn from_f(f: Self::F) -> Self { f.into() } - - fn from_bool(b: bool) -> Self { [F::from_bool(b); N].into() } - - fn from_canonical_u8(n: u8) -> Self { [F::from_canonical_u8(n); N].into() } - - fn from_canonical_u16(n: u16) -> Self { [F::from_canonical_u16(n); N].into() } - - fn from_canonical_u32(n: u32) -> Self { [F::from_canonical_u32(n); N].into() } - - fn from_canonical_u64(n: u64) -> Self { [F::from_canonical_u64(n); N].into() } - - fn from_canonical_usize(n: usize) -> Self { [F::from_canonical_usize(n); N].into() } - - fn from_wrapped_u32(n: u32) -> Self { [F::from_wrapped_u32(n); N].into() } - - fn from_wrapped_u64(n: u64) -> Self { [F::from_wrapped_u64(n); N].into() } - - fn generator() -> Self { [F::generator(); N].into() } -} - -impl Add for FieldArray { - type Output = Self; - - #[inline] - fn add(self, rhs: Self) -> Self::Output { array::from_fn(|i| self.0[i] + rhs.0[i]).into() } -} - -impl Add for FieldArray { - type Output = Self; - - #[inline] - fn add(self, rhs: F) -> Self::Output { self.0.map(|x| x + rhs).into() } -} - -impl AddAssign for FieldArray { - #[inline] - fn add_assign(&mut self, rhs: Self) { self.0.iter_mut().zip(rhs.0).for_each(|(x, y)| *x += y); } -} - -impl AddAssign for FieldArray { - #[inline] - fn add_assign(&mut self, rhs: F) { self.0.iter_mut().for_each(|x| *x += rhs); } -} - -impl Sub for FieldArray { - type Output = Self; - - #[inline] - fn sub(self, rhs: Self) -> Self::Output { array::from_fn(|i| self.0[i] - rhs.0[i]).into() } -} - -impl Sub for FieldArray { - type Output = Self; - - #[inline] - fn sub(self, rhs: F) -> Self::Output { self.0.map(|x| x - rhs).into() } -} - -impl SubAssign for FieldArray { - #[inline] - fn sub_assign(&mut self, rhs: Self) { self.0.iter_mut().zip(rhs.0).for_each(|(x, y)| *x -= y); } -} - -impl SubAssign for FieldArray { - #[inline] - fn sub_assign(&mut self, rhs: F) { self.0.iter_mut().for_each(|x| *x -= rhs); } -} - -impl Neg for FieldArray { - type Output = Self; - - #[inline] - fn neg(self) -> Self::Output { self.0.map(|x| -x).into() } -} - -impl Mul for FieldArray { - type Output = Self; - - #[inline] - fn mul(self, rhs: Self) -> Self::Output { array::from_fn(|i| self.0[i] * rhs.0[i]).into() } -} - -impl Mul for FieldArray { - type Output = Self; - - #[inline] - fn mul(self, rhs: F) -> Self::Output { self.0.map(|x| x * rhs).into() } -} - -impl MulAssign for FieldArray { - #[inline] - fn mul_assign(&mut self, rhs: Self) { self.0.iter_mut().zip(rhs.0).for_each(|(x, y)| *x *= y); } -} - -impl MulAssign for FieldArray { - #[inline] - fn mul_assign(&mut self, rhs: F) { self.0.iter_mut().for_each(|x| *x *= rhs); } -} - -impl Sum for FieldArray { - #[inline] - fn sum>(iter: I) -> Self { - iter.reduce(|lhs, rhs| lhs + rhs).unwrap_or(Self::zero()) - } -} - -impl Product for FieldArray { - #[inline] - fn product>(iter: I) -> Self { - iter.reduce(|lhs, rhs| lhs * rhs).unwrap_or(Self::one()) - } -} diff --git a/field/src/batch_inverse.rs b/field/src/batch_inverse.rs deleted file mode 100644 index dd591bf7..00000000 --- a/field/src/batch_inverse.rs +++ /dev/null @@ -1,93 +0,0 @@ -use alloc::{vec, vec::Vec}; - -use crate::field::Field; - -/// Batch multiplicative inverses with Montgomery's trick -/// This is Montgomery's trick. At a high level, we invert the product of the given field -/// elements, then derive the individual inverses from that via multiplication. -/// -/// The usual Montgomery trick involves calculating an array of cumulative products, -/// resulting in a long dependency chain. To increase instruction-level parallelism, we -/// compute WIDTH separate cumulative product arrays that only meet at the end. -/// -/// # Panics -/// Might panic if asserts or unwraps uncover a bug. -pub fn batch_multiplicative_inverse(x: &[F]) -> Vec { - // Higher WIDTH increases instruction-level parallelism, but too high a value will cause us - // to run out of registers. - const WIDTH: usize = 4; - // JN note: WIDTH is 4. The code is specialized to this value and will need - // modification if it is changed. I tried to make it more generic, but Rust's const - // generics are not yet good enough. - - // Handle special cases. Paradoxically, below is repetitive but concise. - // The branches should be very predictable. - let n = x.len(); - if n == 0 { - return Vec::new(); - } else if n == 1 { - return vec![x[0].inverse()]; - } else if n == 2 { - let x01 = x[0] * x[1]; - let x01inv = x01.inverse(); - return vec![x01inv * x[1], x01inv * x[0]]; - } else if n == 3 { - let x01 = x[0] * x[1]; - let x012 = x01 * x[2]; - let x012inv = x012.inverse(); - let x01inv = x012inv * x[2]; - return vec![x01inv * x[1], x01inv * x[0], x012inv * x01]; - } - debug_assert!(n >= WIDTH); - - // Buf is reused for a few things to save allocations. - // Fill buf with cumulative product of x, only taking every 4th value. Concretely, buf will - // be [ - // x[0], x[1], x[2], x[3], - // x[0] * x[4], x[1] * x[5], x[2] * x[6], x[3] * x[7], - // x[0] * x[4] * x[8], x[1] * x[5] * x[9], x[2] * x[6] * x[10], x[3] * x[7] * x[11], - // ... - // ]. - // If n is not a multiple of WIDTH, the result is truncated from the end. For example, - // for n == 5, we get [x[0], x[1], x[2], x[3], x[0] * x[4]]. - let mut buf: Vec = Vec::with_capacity(n); - // cumul_prod holds the last WIDTH elements of buf. This is redundant, but it's how we - // convince LLVM to keep the values in the registers. - let mut cumul_prod: [F; WIDTH] = x[..WIDTH].try_into().unwrap(); - buf.extend(cumul_prod); - for (i, &xi) in x[WIDTH..].iter().enumerate() { - cumul_prod[i % WIDTH] *= xi; - buf.push(cumul_prod[i % WIDTH]); - } - debug_assert_eq!(buf.len(), n); - - let mut a_inv = { - // This is where the four dependency chains meet. - // Take the last four elements of buf and invert them all. - let c01 = cumul_prod[0] * cumul_prod[1]; - let c23 = cumul_prod[2] * cumul_prod[3]; - let c0123 = c01 * c23; - let c0123inv = c0123.inverse(); - let c01inv = c0123inv * c23; - let c23inv = c0123inv * c01; - [c01inv * cumul_prod[1], c01inv * cumul_prod[0], c23inv * cumul_prod[3], c23inv * cumul_prod[2]] - }; - - for i in (WIDTH..n).rev() { - // buf[i - WIDTH] has not been written to by this loop, so it equals - // x[i % WIDTH] * x[i % WIDTH + WIDTH] * ... * x[i - WIDTH]. - buf[i] = buf[i - WIDTH] * a_inv[i % WIDTH]; - // buf[i] now holds the inverse of x[i]. - a_inv[i % WIDTH] *= x[i]; - } - for i in (0..WIDTH).rev() { - buf[i] = a_inv[i]; - } - - for (&bi, &xi) in buf.iter().zip(x) { - // Sanity check only. - debug_assert_eq!(bi * xi, F::one()); - } - - buf -} diff --git a/field/src/exponentiation.rs b/field/src/exponentiation.rs deleted file mode 100644 index f9febeb1..00000000 --- a/field/src/exponentiation.rs +++ /dev/null @@ -1,122 +0,0 @@ -use crate::AbstractField; - -pub fn exp_u64_by_squaring(val: AF, power: u64) -> AF { - let mut current = val; - let mut product = AF::one(); - - for j in 0..bits_u64(power) { - if (power >> j & 1) != 0 { - product *= current.clone(); - } - current = current.square(); - } - product -} - -const fn bits_u64(n: u64) -> usize { (64 - n.leading_zeros()) as usize } - -pub fn exp_1717986917(val: AF) -> AF { - // Note that 5 * 1717986917 = 4*(2^31 - 2) + 1 = 1 mod p - 1. - // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{1717986917})^5 = a. - // Note the binary expansion: 1717986917 = 1100110011001100110011001100101_2 - // This uses 30 Squares + 7 Multiplications => 37 Operations total. - // Suspect it's possible to improve this with enough effort. For example 1717986918 takes only 4 - // Multiplications. - let p1 = val; - let p10 = p1.square(); - let p11 = p10.clone() * p1; - let p101 = p10 * p11.clone(); - let p110000 = p11.exp_power_of_2(4); - let p110011 = p110000 * p11.clone(); - let p11001100000000 = p110011.exp_power_of_2(8); - let p11001100110011 = p11001100000000.clone() * p110011; - let p1100110000000000000000 = p11001100000000.exp_power_of_2(8); - let p1100110011001100110011 = p1100110000000000000000 * p11001100110011; - let p11001100110011001100110000 = p1100110011001100110011.exp_power_of_2(4); - let p11001100110011001100110011 = p11001100110011001100110000 * p11; - let p1100110011001100110011001100000 = p11001100110011001100110011.exp_power_of_2(5); - p1100110011001100110011001100000 * p101 -} - -pub fn exp_1420470955(val: AF) -> AF { - // Note that 3 * 1420470955 = 2*(2^31 - 2^24) + 1 = 1 mod (p - 1). - // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{1420470955})^3 = a. - // Note the binary expansion: 1420470955 = 1010100101010101010101010101011_2 - // This uses 29 Squares + 7 Multiplications => 36 Operations total. - // Suspect it's possible to improve this with enough effort. - let p1 = val; - let p100 = p1.exp_power_of_2(2); - let p101 = p100.clone() * p1.clone(); - let p10000 = p100.exp_power_of_2(2); - let p10101 = p10000 * p101; - let p10101000000 = p10101.clone().exp_power_of_2(6); - let p10101010101 = p10101000000.clone() * p10101.clone(); - let p101010010101 = p10101000000 * p10101010101.clone(); - let p101010010101000000000000 = p101010010101.exp_power_of_2(12); - let p101010010101010101010101 = p101010010101000000000000 * p10101010101; - let p101010010101010101010101000000 = p101010010101010101010101.exp_power_of_2(6); - let p101010010101010101010101010101 = p101010010101010101010101000000 * p10101; - let p1010100101010101010101010101010 = p101010010101010101010101010101.square(); - p1010100101010101010101010101010 * p1.clone() -} - -pub fn exp_1725656503(val: AF) -> AF { - // Note that 7 * 1725656503 = 6*(2^31 - 2^27) + 1 = 1 mod (p - 1). - // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{1725656503})^7 = a. - // Note the binary expansion: 1725656503 = 1100110110110110110110110110111_2 - // This uses 29 Squares + 8 Multiplications => 37 Operations total. - // Suspect it's possible to improve this with enough effort. - let p1 = val; - let p10 = p1.square(); - let p11 = p10 * p1.clone(); - let p110 = p11.square(); - let p111 = p110.clone() * p1; - let p11000 = p110.exp_power_of_2(2); - let p11011 = p11000.clone() * p11; - let p11000000 = p11000.exp_power_of_2(3); - let p11011011 = p11000000.clone() * p11011; - let p110011011 = p11011011.clone() * p11000000; - let p110011011000000000 = p110011011.exp_power_of_2(9); - let p110011011011011011 = p110011011000000000 * p11011011.clone(); - let p110011011011011011000000000 = p110011011011011011.exp_power_of_2(9); - let p110011011011011011011011011 = p110011011011011011000000000 * p11011011; - let p1100110110110110110110110110000 = p110011011011011011011011011.exp_power_of_2(4); - p1100110110110110110110110110000 * p111 -} - -pub fn exp_10540996611094048183(val: AF) -> AF { - // Note that 7*10540996611094048183 = 4*(2^64 - 2**32) + 1 = 1 mod (p - 1). - // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{10540996611094048183})^7 = a. - // Also: 10540996611094048183 = - // 1001001001001001001001001001000110110110110110110110110110110111_2. This uses 63 Squares + 8 - // Multiplications => 71 Operations total. Suspect it's possible to improve this a little with - // enough effort. - let p1 = val; - let p10 = p1.square(); - let p11 = p10.clone() * p1.clone(); - let p100 = p10.square(); - let p111 = p100.clone() * p11.clone(); - let p100000000000000000000000000000000 = p100.exp_power_of_2(30); - let p100000000000000000000000000000011 = p100000000000000000000000000000000 * p11; - let p100000000000000000000000000000011000 = p100000000000000000000000000000011.exp_power_of_2(3); - let p100100000000000000000000000000011011 = - p100000000000000000000000000000011000 * p100000000000000000000000000000011; - let p100100000000000000000000000000011011000000 = - p100100000000000000000000000000011011.exp_power_of_2(6); - let p100100100100000000000000000000011011011011 = - p100100000000000000000000000000011011000000 * p100100000000000000000000000000011011.clone(); - let p100100100100000000000000000000011011011011000000000000 = - p100100100100000000000000000000011011011011.exp_power_of_2(12); - let p100100100100100100100100000000011011011011011011011011 = - p100100100100000000000000000000011011011011000000000000 - * p100100100100000000000000000000011011011011; - let p100100100100100100100100000000011011011011011011011011000000 = - p100100100100100100100100000000011011011011011011011011.exp_power_of_2(6); - let p100100100100100100100100100100011011011011011011011011011011 = - p100100100100100100100100000000011011011011011011011011000000 - * p100100000000000000000000000000011011; - let p1001001001001001001001001001000110110110110110110110110110110000 = - p100100100100100100100100100100011011011011011011011011011011.exp_power_of_2(4); - - p1001001001001001001001001001000110110110110110110110110110110000 * p111 -} diff --git a/field/src/extension/binomial_extension.rs b/field/src/extension/binomial_extension.rs deleted file mode 100644 index a7b84b50..00000000 --- a/field/src/extension/binomial_extension.rs +++ /dev/null @@ -1,512 +0,0 @@ -use alloc::{format, string::ToString}; -use core::{ - array, - fmt::{self, Debug, Display, Formatter}, - iter::{Product, Sum}, - ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}, -}; - -use itertools::Itertools; -use num_bigint::BigUint; -use rand::{distributions::Standard, prelude::Distribution}; -use serde::{Deserialize, Serialize}; - -use super::{HasFrobenius, HasTwoAdicBionmialExtension}; -use crate::{ - extension::BinomiallyExtendable, field::Field, field_to_array, AbstractExtensionField, - AbstractField, ExtensionField, Packable, TwoAdicField, -}; - -#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize, Deserialize)] -pub struct BinomialExtensionField { - #[serde( - with = "p3_util::array_serialization", - bound(serialize = "AF: Serialize", deserialize = "AF: Deserialize<'de>") - )] - pub(crate) value: [AF; D], -} - -impl Default for BinomialExtensionField { - fn default() -> Self { Self { value: array::from_fn(|_| AF::zero()) } } -} - -impl From for BinomialExtensionField { - fn from(x: AF) -> Self { Self { value: field_to_array::(x) } } -} - -impl, const D: usize> Packable for BinomialExtensionField {} - -impl, const D: usize> ExtensionField - for BinomialExtensionField -{ - type ExtensionPacking = BinomialExtensionField; -} - -impl, const D: usize> HasFrobenius for BinomialExtensionField { - /// FrobeniusField automorphisms: x -> x^n, where n is the order of BaseField. - fn frobenius(&self) -> Self { self.repeated_frobenius(1) } - - /// Repeated Frobenius automorphisms: x -> x^(n^count). - /// - /// Follows precomputation suggestion in Section 11.3.3 of the - /// Handbook of Elliptic and Hyperelliptic Curve Cryptography. - fn repeated_frobenius(&self, count: usize) -> Self { - if count == 0 { - return *self; - } else if count >= D { - // x |-> x^(n^D) is the identity, so x^(n^count) == - // x^(n^(count % D)) - return self.repeated_frobenius(count % D); - } - let arr: &[F] = self.as_base_slice(); - - // z0 = DTH_ROOT^count = W^(k * count) where k = floor((n-1)/D) - let mut z0 = F::dth_root(); - for _ in 1..count { - z0 *= F::dth_root(); - } - - let mut res = [F::zero(); D]; - for (i, z) in z0.powers().take(D).enumerate() { - res[i] = arr[i] * z; - } - - Self::from_base_slice(&res) - } - - /// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography. - fn frobenius_inv(&self) -> Self { - // Writing 'a' for self, we need to compute a^(r-1): - // r = n^D-1/n-1 = n^(D-1)+n^(D-2)+...+n - let mut f = Self::one(); - for _ in 1..D { - f = (f * *self).frobenius(); - } - - // g = a^r is in the base field, so only compute that - // coefficient rather than the full product. - let a = self.value; - let b = f.value; - let mut g = F::zero(); - for i in 1..D { - g += a[i] * b[D - i]; - } - g *= F::w(); - g += a[0] * b[0]; - debug_assert_eq!(Self::from(g), *self * f); - - f * g.inverse() - } -} - -impl AbstractField for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type F = BinomialExtensionField; - - fn zero() -> Self { Self { value: field_to_array::(AF::zero()) } } - - fn one() -> Self { Self { value: field_to_array::(AF::one()) } } - - fn two() -> Self { Self { value: field_to_array::(AF::two()) } } - - fn neg_one() -> Self { Self { value: field_to_array::(AF::neg_one()) } } - - fn from_f(f: Self::F) -> Self { Self { value: f.value.map(AF::from_f) } } - - fn from_bool(b: bool) -> Self { AF::from_bool(b).into() } - - fn from_canonical_u8(n: u8) -> Self { AF::from_canonical_u8(n).into() } - - fn from_canonical_u16(n: u16) -> Self { AF::from_canonical_u16(n).into() } - - fn from_canonical_u32(n: u32) -> Self { AF::from_canonical_u32(n).into() } - - /// Convert from `u64`. Undefined behavior if the input is outside the canonical range. - fn from_canonical_u64(n: u64) -> Self { AF::from_canonical_u64(n).into() } - - /// Convert from `usize`. Undefined behavior if the input is outside the canonical range. - fn from_canonical_usize(n: usize) -> Self { AF::from_canonical_usize(n).into() } - - fn from_wrapped_u32(n: u32) -> Self { AF::from_wrapped_u32(n).into() } - - fn from_wrapped_u64(n: u64) -> Self { AF::from_wrapped_u64(n).into() } - - fn generator() -> Self { Self { value: AF::F::ext_generator().map(AF::from_f) } } - - #[inline(always)] - fn square(&self) -> Self { - match D { - 2 => { - let a = self.value.clone(); - let mut res = Self::default(); - res.value[0] = a[0].square() + a[1].square() * AF::from_f(AF::F::w()); - res.value[1] = a[0].clone() * a[1].double(); - res - }, - 3 => Self { value: cubic_square(&self.value, AF::F::w()).to_vec().try_into().unwrap() }, - _ => >::mul(self.clone(), self.clone()), - } - } -} - -impl, const D: usize> Field for BinomialExtensionField { - type Packing = Self; - - fn try_inverse(&self) -> Option { - if self.is_zero() { - return None; - } - - match D { - 2 => Some(Self::from_base_slice(&qudratic_inv(&self.value, F::w()))), - 3 => Some(Self::from_base_slice(&cubic_inv(&self.value, F::w()))), - _ => Some(self.frobenius_inv()), - } - } - - fn halve(&self) -> Self { Self { value: self.value.map(|x| x.halve()) } } - - fn order() -> BigUint { F::order().pow(D as u32) } -} - -impl Display for BinomialExtensionField -where F: BinomiallyExtendable -{ - fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { - if self.is_zero() { - write!(f, "0") - } else { - let str = self - .value - .iter() - .enumerate() - .filter(|(_, x)| !x.is_zero()) - .map(|(i, x)| match (i, x.is_one()) { - (0, _) => format!("{x}"), - (1, true) => "X".to_string(), - (1, false) => format!("{x} X"), - (_, true) => format!("X^{i}"), - (_, false) => format!("{x} X^{i}"), - }) - .join(" + "); - write!(f, "{}", str) - } - } -} - -impl Neg for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn neg(self) -> Self { Self { value: self.value.map(AF::neg) } } -} - -impl Add for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn add(self, rhs: Self) -> Self { - let mut res = self.value; - for (r, rhs_val) in res.iter_mut().zip(rhs.value) { - *r += rhs_val; - } - Self { value: res } - } -} - -impl Add for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn add(self, rhs: AF) -> Self { - let mut res = self.value; - res[0] += rhs; - Self { value: res } - } -} - -impl AddAssign for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - fn add_assign(&mut self, rhs: Self) { *self = self.clone() + rhs; } -} - -impl AddAssign for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - fn add_assign(&mut self, rhs: AF) { *self = self.clone() + rhs; } -} - -impl Sum for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - fn sum>(iter: I) -> Self { - let zero = Self { value: field_to_array::(AF::zero()) }; - iter.fold(zero, |acc, x| acc + x) - } -} - -impl Sub for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn sub(self, rhs: Self) -> Self { - let mut res = self.value; - for (r, rhs_val) in res.iter_mut().zip(rhs.value) { - *r -= rhs_val; - } - Self { value: res } - } -} - -impl Sub for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn sub(self, rhs: AF) -> Self { - let mut res = self.value; - res[0] -= rhs; - Self { value: res } - } -} - -impl SubAssign for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - #[inline] - fn sub_assign(&mut self, rhs: Self) { *self = self.clone() - rhs; } -} - -impl SubAssign for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - #[inline] - fn sub_assign(&mut self, rhs: AF) { *self = self.clone() - rhs; } -} - -impl Mul for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn mul(self, rhs: Self) -> Self { - let a = self.value; - let b = rhs.value; - let w = AF::F::w(); - let w_af = AF::from_f(w); - - match D { - 2 => { - let mut res = Self::default(); - res.value[0] = a[0].clone() * b[0].clone() + a[1].clone() * w_af * b[1].clone(); - res.value[1] = a[0].clone() * b[1].clone() + a[1].clone() * b[0].clone(); - res - }, - 3 => Self { value: cubic_mul(&a, &b, w).to_vec().try_into().unwrap() }, - _ => { - let mut res = Self::default(); - #[allow(clippy::needless_range_loop)] - for i in 0..D { - for j in 0..D { - if i + j >= D { - res.value[i + j - D] += a[i].clone() * w_af.clone() * b[j].clone(); - } else { - res.value[i + j] += a[i].clone() * b[j].clone(); - } - } - } - res - }, - } - } -} - -impl Mul for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - type Output = Self; - - #[inline] - fn mul(self, rhs: AF) -> Self { Self { value: self.value.map(|x| x * rhs.clone()) } } -} - -impl Product for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - fn product>(iter: I) -> Self { - let one = Self { value: field_to_array::(AF::one()) }; - iter.fold(one, |acc, x| acc * x) - } -} - -impl Div for BinomialExtensionField -where F: BinomiallyExtendable -{ - type Output = Self; - - #[allow(clippy::suspicious_arithmetic_impl)] - fn div(self, rhs: Self) -> Self::Output { self * rhs.inverse() } -} - -impl DivAssign for BinomialExtensionField -where F: BinomiallyExtendable -{ - fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } -} - -impl MulAssign for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - #[inline] - fn mul_assign(&mut self, rhs: Self) { *self = self.clone() * rhs; } -} - -impl MulAssign for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - fn mul_assign(&mut self, rhs: AF) { *self = self.clone() * rhs; } -} - -impl AbstractExtensionField for BinomialExtensionField -where - AF: AbstractField, - AF::F: BinomiallyExtendable, -{ - const D: usize = D; - - fn from_base(b: AF) -> Self { Self { value: field_to_array(b) } } - - fn from_base_slice(bs: &[AF]) -> Self { - Self { value: bs.to_vec().try_into().expect("slice has wrong length") } - } - - #[inline] - fn from_base_fn AF>(f: F) -> Self { Self { value: array::from_fn(f) } } - - fn as_base_slice(&self) -> &[AF] { &self.value } -} - -impl, const D: usize> Distribution> - for Standard -where Standard: Distribution -{ - fn sample(&self, rng: &mut R) -> BinomialExtensionField { - let mut res = [F::zero(); D]; - for r in res.iter_mut() { - *r = Standard.sample(rng); - } - BinomialExtensionField::::from_base_slice(&res) - } -} - -impl, const D: usize> TwoAdicField - for BinomialExtensionField -{ - const TWO_ADICITY: usize = F::EXT_TWO_ADICITY; - - fn two_adic_generator(bits: usize) -> Self { Self { value: F::ext_two_adic_generator(bits) } } -} - -/// Section 11.3.6b in Handbook of Elliptic and Hyperelliptic Curve Cryptography. -#[inline] -fn qudratic_inv(a: &[F], w: F) -> [F; 2] { - let scalar = (a[0].square() - w * a[1].square()).inverse(); - [a[0] * scalar, -a[1] * scalar] -} - -/// Section 11.3.6b in Handbook of Elliptic and Hyperelliptic Curve Cryptography. -#[inline] -fn cubic_inv(a: &[F], w: F) -> [F; 3] { - let a0_square = a[0].square(); - let a1_square = a[1].square(); - let a2_w = w * a[2]; - let a0_a1 = a[0] * a[1]; - - // scalar = (a0^3+wa1^3+w^2a2^3-3wa0a1a2)^-1 - let scalar = (a0_square * a[0] + w * a[1] * a1_square + a2_w.square() * a[2] - - (F::one() + F::two()) * a2_w * a0_a1) - .inverse(); - - // scalar*[a0^2-wa1a2, wa2^2-a0a1, a1^2-a0a2] - [ - scalar * (a0_square - a[1] * a2_w), - scalar * (a2_w * a[2] - a0_a1), - scalar * (a1_square - a[0] * a[2]), - ] -} - -/// karatsuba multiplication for cubic extension field -#[inline] -fn cubic_mul(a: &[AF], b: &[AF], w: AF::F) -> [AF; 3] { - let a0_b0 = a[0].clone() * b[0].clone(); - let a1_b1 = a[1].clone() * b[1].clone(); - let a2_b2 = a[2].clone() * b[2].clone(); - - let c0 = a0_b0.clone() - + ((a[1].clone() + a[2].clone()) * (b[1].clone() + b[2].clone()) - - a1_b1.clone() - - a2_b2.clone()) - * AF::from_f(w); - let c1 = - (a[0].clone() + a[1].clone()) * (b[0].clone() + b[1].clone()) - a0_b0.clone() - a1_b1.clone() - + a2_b2.clone() * AF::from_f(w); - let c2 = (a[0].clone() + a[2].clone()) * (b[0].clone() + b[2].clone()) - a0_b0 - a2_b2 + a1_b1; - - [c0, c1, c2] -} - -/// Section 11.3.6a in Handbook of Elliptic and Hyperelliptic Curve Cryptography. -#[inline] -fn cubic_square(a: &[AF], w: AF::F) -> [AF; 3] { - let w_a2 = a[2].clone() * AF::from_f(w); - - let c0 = a[0].square() + (a[1].clone() * w_a2.clone()).double(); - let c1 = w_a2 * a[2].clone() + (a[0].clone() * a[1].clone()).double(); - let c2 = a[1].square() + (a[0].clone() * a[2].clone()).double(); - - [c0, c1, c2] -} diff --git a/field/src/extension/complex.rs b/field/src/extension/complex.rs deleted file mode 100644 index 743f43da..00000000 --- a/field/src/extension/complex.rs +++ /dev/null @@ -1,87 +0,0 @@ -use super::{BinomialExtensionField, BinomiallyExtendable, HasTwoAdicBionmialExtension}; -use crate::{AbstractExtensionField, AbstractField, Field}; - -pub type Complex = BinomialExtensionField; - -/// A field for which `p = 3 (mod 4)`. Equivalently, `-1` is not a square, -/// so the complex extension can be defined `F[X]/(X^2+1)`. -pub trait ComplexExtendable: Field { - /// The two-adicity of `p+1`, the order of the circle group. - const CIRCLE_TWO_ADICITY: usize; - - fn complex_generator() -> Complex; - - fn circle_two_adic_generator(bits: usize) -> Complex; -} - -impl BinomiallyExtendable<2> for F { - fn w() -> Self { F::neg_one() } - - fn dth_root() -> Self { - // since `p = 3 (mod 4)`, `(p-1)/2` is always odd, - // so `(-1)^((p-1)/2) = -1` - F::neg_one() - } - - fn ext_generator() -> [Self; 2] { F::complex_generator().value } -} - -/// Convenience methods for complex extensions -impl Complex { - pub const fn new(real: AF, imag: AF) -> Self { Self { value: [real, imag] } } - - pub fn new_real(real: AF) -> Self { Self::new(real, AF::zero()) } - - pub fn new_imag(imag: AF) -> Self { Self::new(AF::zero(), imag) } - - pub fn real(&self) -> AF { self.value[0].clone() } - - pub fn imag(&self) -> AF { self.value[1].clone() } - - pub fn conjugate(&self) -> Self { Self::new(self.real(), self.imag().neg()) } - - pub fn norm(&self) -> AF { self.real().square() + self.imag().square() } - - pub fn to_array(&self) -> [AF; 2] { self.value.clone() } - - // Sometimes we want to rotate over an extension that's not necessarily ComplexExtendable, - // but still on the circle. - pub fn rotate>(&self, rhs: Complex) -> Complex { - Complex::::new( - rhs.real() * self.real() - rhs.imag() * self.imag(), - rhs.imag() * self.real() + rhs.real() * self.imag(), - ) - } -} - -/// The complex extension of this field has a binomial extension. -pub trait HasComplexBinomialExtension: ComplexExtendable { - fn w() -> Complex; - fn dth_root() -> Complex; - fn ext_generator() -> [Complex; D]; -} - -impl BinomiallyExtendable for Complex -where F: HasComplexBinomialExtension -{ - fn w() -> Self { >::w() } - - fn dth_root() -> Self { >::dth_root() } - - fn ext_generator() -> [Self; D] { >::ext_generator() } -} - -/// The complex extension of this field has a two-adic binomial extension. -pub trait HasTwoAdicComplexBinomialExtension: - HasComplexBinomialExtension { - const COMPLEX_EXT_TWO_ADICITY: usize; - fn complex_ext_two_adic_generator(bits: usize) -> [Complex; D]; -} - -impl HasTwoAdicBionmialExtension for Complex -where F: HasTwoAdicComplexBinomialExtension -{ - const EXT_TWO_ADICITY: usize = F::COMPLEX_EXT_TWO_ADICITY; - - fn ext_two_adic_generator(bits: usize) -> [Self; D] { F::complex_ext_two_adic_generator(bits) } -} diff --git a/field/src/extension/mod.rs b/field/src/extension/mod.rs deleted file mode 100644 index ea1c165e..00000000 --- a/field/src/extension/mod.rs +++ /dev/null @@ -1,56 +0,0 @@ -use core::{debug_assert, debug_assert_eq, iter}; - -use crate::{field::Field, naive_poly_mul, ExtensionField}; - -mod binomial_extension; -mod complex; - -use alloc::{vec, vec::Vec}; - -pub use binomial_extension::*; -pub use complex::*; - -/// Binomial extension field trait. -/// A extension field with a irreducible polynomial X^d-W -/// such that the extension is `F[X]/(X^d-W)`. -pub trait BinomiallyExtendable: Field { - fn w() -> Self; - - // DTH_ROOT = W^((n - 1)/D). - // n is the order of base field. - // Only works when exists k such that n = kD + 1. - fn dth_root() -> Self; - - fn ext_generator() -> [Self; D]; -} - -pub trait HasFrobenius: ExtensionField { - fn frobenius(&self) -> Self; - fn repeated_frobenius(&self, count: usize) -> Self; - fn frobenius_inv(&self) -> Self; - - fn minimal_poly(mut self) -> Vec { - let mut m = vec![Self::one()]; - for _ in 0..Self::D { - m = naive_poly_mul(&m, &[-self, Self::one()]); - self = self.frobenius(); - } - let mut m_iter = m.into_iter().map(|c| c.as_base().expect("Extension is not algebraic?")); - let m: Vec = m_iter.by_ref().take(Self::D + 1).collect(); - debug_assert_eq!(m.len(), Self::D + 1); - debug_assert_eq!(m.last(), Some(&F::one())); - debug_assert!(m_iter.all(|c| c.is_zero())); - m - } - - fn galois_group(self) -> Vec { - iter::successors(Some(self), |x| Some(x.frobenius())).take(Self::D).collect() - } -} - -/// Optional trait for implementing Two Adic Binomial Extension Field. -pub trait HasTwoAdicBionmialExtension: BinomiallyExtendable { - const EXT_TWO_ADICITY: usize; - - fn ext_two_adic_generator(bits: usize) -> [Self; D]; -} diff --git a/field/src/field.rs b/field/src/field.rs deleted file mode 100644 index d755b759..00000000 --- a/field/src/field.rs +++ /dev/null @@ -1,390 +0,0 @@ -use alloc::vec; -use core::{ - fmt::{Debug, Display}, - hash::Hash, - iter::{Product, Sum}, - ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign}, - slice, -}; - -use itertools::Itertools; -use num_bigint::BigUint; -use serde::{de::DeserializeOwned, Serialize}; - -use crate::{ - exponentiation::exp_u64_by_squaring, - packed::{PackedField, PackedValue}, - Packable, -}; - -/// A generalization of `Field` which permits things like -/// - an actual field element -/// - a symbolic expression which would evaluate to a field element -/// - a vector of field elements -pub trait AbstractField: - Sized - + Default - + Clone - + Add - + AddAssign - + Sub - + SubAssign - + Neg - + Mul - + MulAssign - + Sum - + Product - + Debug { - type F: Field; - - fn zero() -> Self; - fn one() -> Self; - fn two() -> Self; - fn neg_one() -> Self; - - fn from_f(f: Self::F) -> Self; - fn from_bool(b: bool) -> Self; - fn from_canonical_u8(n: u8) -> Self; - fn from_canonical_u16(n: u16) -> Self; - fn from_canonical_u32(n: u32) -> Self; - fn from_canonical_u64(n: u64) -> Self; - fn from_canonical_usize(n: usize) -> Self; - - fn from_wrapped_u32(n: u32) -> Self; - fn from_wrapped_u64(n: u64) -> Self; - - /// A generator of this field's entire multiplicative group. - fn generator() -> Self; - - #[must_use] - fn double(&self) -> Self { self.clone() + self.clone() } - - #[must_use] - fn square(&self) -> Self { self.clone() * self.clone() } - - #[must_use] - fn cube(&self) -> Self { self.square() * self.clone() } - - /// Exponentiation by a `u64` power. - /// - /// The default implementation calls `exp_u64_generic`, which by default performs exponentiation - /// by squaring. Rather than override this method, it is generally recommended to have the - /// concrete field type override `exp_u64_generic`, so that any optimizations will apply to all - /// abstract fields. - #[must_use] - #[inline] - fn exp_u64(&self, power: u64) -> Self { Self::F::exp_u64_generic(self.clone(), power) } - - #[must_use] - #[inline(always)] - fn exp_const_u64(&self) -> Self { - match POWER { - 0 => Self::one(), - 1 => self.clone(), - 2 => self.square(), - 3 => self.cube(), - 4 => self.square().square(), - 5 => self.square().square() * self.clone(), - 6 => self.square().cube(), - 7 => { - let x2 = self.square(); - let x3 = x2.clone() * self.clone(); - let x4 = x2.square(); - x3 * x4 - }, - _ => self.exp_u64(POWER), - } - } - - #[must_use] - fn exp_power_of_2(&self, power_log: usize) -> Self { - let mut res = self.clone(); - for _ in 0..power_log { - res = res.square(); - } - res - } - - #[must_use] - fn powers(&self) -> Powers { self.shifted_powers(Self::one()) } - - fn shifted_powers(&self, start: Self) -> Powers { - Powers { base: self.clone(), current: start } - } - - fn powers_packed>(&self) -> PackedPowers { - self.shifted_powers_packed(Self::one()) - } - - fn shifted_powers_packed>( - &self, - start: Self, - ) -> PackedPowers { - let mut current = P::from_f(start); - let slice = current.as_slice_mut(); - for i in 1..P::WIDTH { - slice[i] = slice[i - 1].clone() * self.clone(); - } - - PackedPowers { multiplier: P::from_f(self.clone()).exp_u64(P::WIDTH as u64), current } - } - - fn dot_product(u: &[Self; N], v: &[Self; N]) -> Self { - u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum() - } - - fn try_div(self, rhs: Rhs) -> Option<>::Output> - where - Rhs: Field, - Self: Mul, { - rhs.try_inverse().map(|inv| self * inv) - } -} - -/// An element of a finite field. -pub trait Field: - AbstractField - + Packable - + 'static - + Copy - + Div - + Eq - + Hash - + Send - + Sync - + Display - + Serialize - + DeserializeOwned { - type Packing: PackedField; - - fn is_zero(&self) -> bool { *self == Self::zero() } - - fn is_one(&self) -> bool { *self == Self::one() } - - /// self * 2^exp - #[must_use] - #[inline] - fn mul_2exp_u64(&self, exp: u64) -> Self { *self * Self::two().exp_u64(exp) } - - /// self / 2^exp - #[must_use] - #[inline] - fn div_2exp_u64(&self, exp: u64) -> Self { *self / Self::two().exp_u64(exp) } - - /// Exponentiation by a `u64` power. This is similar to `exp_u64`, but more general in that it - /// can be used with `AbstractField`s, not just this concrete field. - /// - /// The default implementation uses naive square and multiply. Implementations may want to - /// override this and handle certain powers with more optimal addition chains. - #[must_use] - #[inline] - fn exp_u64_generic>(val: AF, power: u64) -> AF { - exp_u64_by_squaring(val, power) - } - - /// The multiplicative inverse of this field element, if it exists. - /// - /// NOTE: The inverse of `0` is undefined and will return `None`. - #[must_use] - fn try_inverse(&self) -> Option; - - #[must_use] - fn inverse(&self) -> Self { self.try_inverse().expect("Tried to invert zero") } - - /// Computes input/2. - /// Should be overwritten by most field implementations to use bitshifts. - /// Will error if the field characteristic is 2. - #[must_use] - fn halve(&self) -> Self { - let half = - Self::two().try_inverse().expect("Cannot divide by 2 in fields with characteristic 2"); - *self * half - } - - fn order() -> BigUint; - - #[inline] - fn bits() -> usize { Self::order().bits() as usize } -} - -pub trait PrimeField: Field + Ord { - fn as_canonical_biguint(&self) -> BigUint; -} - -/// A prime field of order less than `2^64`. -pub trait PrimeField64: PrimeField { - const ORDER_U64: u64; - - /// Return the representative of `value` that is less than `ORDER_U64`. - fn as_canonical_u64(&self) -> u64; -} - -/// A prime field of order less than `2^32`. -pub trait PrimeField32: PrimeField64 { - const ORDER_U32: u32; - - /// Return the representative of `value` that is less than `ORDER_U32`. - fn as_canonical_u32(&self) -> u32; -} - -pub trait AbstractExtensionField: - AbstractField - + From - + Add - + AddAssign - + Sub - + SubAssign - + Mul - + MulAssign { - const D: usize; - - fn from_base(b: Base) -> Self; - - /// Suppose this field extension is represented by the quotient - /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible - /// polynomial of degree `D`. This function takes a slice `bs` of - /// length at most D, and constructs the field element - /// \sum_i bs[i] * X^i. - /// - /// NB: The value produced by this function fundamentally depends - /// on the choice of irreducible polynomial f. Care must be taken - /// to ensure portability if these values might ever be passed to - /// (or rederived within) another compilation environment where a - /// different f might have been used. - fn from_base_slice(bs: &[Base]) -> Self; - - /// Similar to `core:array::from_fn`, with the same caveats as - /// `from_base_slice`. - fn from_base_fn Base>(f: F) -> Self; - - /// Suppose this field extension is represented by the quotient - /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible - /// polynomial of degree `D`. This function takes a field element - /// \sum_i bs[i] * X^i and returns the coefficients as a slice - /// `bs` of length at most D containing, from lowest degree to - /// highest. - /// - /// NB: The value produced by this function fundamentally depends - /// on the choice of irreducible polynomial f. Care must be taken - /// to ensure portability if these values might ever be passed to - /// (or rederived within) another compilation environment where a - /// different f might have been used. - fn as_base_slice(&self) -> &[Base]; - - /// Suppose this field extension is represented by the quotient - /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible - /// polynomial of degree `D`. This function returns the field - /// element `X^exponent` if `exponent < D` and panics otherwise. - /// (The fact that f is not known at the point that this function - /// is defined prevents implementing exponentiation of higher - /// powers since the reduction cannot be performed.) - /// - /// NB: The value produced by this function fundamentally depends - /// on the choice of irreducible polynomial f. Care must be taken - /// to ensure portability if these values might ever be passed to - /// (or rederived within) another compilation environment where a - /// different f might have been used. - fn monomial(exponent: usize) -> Self { - assert!(exponent < Self::D, "requested monomial of too high degree"); - let mut vec = vec![Base::zero(); Self::D]; - vec[exponent] = Base::one(); - Self::from_base_slice(&vec) - } -} - -pub trait ExtensionField: Field + AbstractExtensionField { - type ExtensionPacking: AbstractExtensionField - + 'static - + Copy - + Send - + Sync; - - fn is_in_basefield(&self) -> bool { self.as_base_slice()[1..].iter().all(Field::is_zero) } - fn as_base(&self) -> Option { - if self.is_in_basefield() { - Some(self.as_base_slice()[0]) - } else { - None - } - } - - fn ext_powers_packed(&self) -> impl Iterator { - let powers = self.powers().take(Base::Packing::WIDTH + 1).collect_vec(); - // Transpose first WIDTH powers - let current = Self::ExtensionPacking::from_base_fn(|i| { - Base::Packing::from_fn(|j| powers[j].as_base_slice()[i]) - }); - // Broadcast self^WIDTH - let multiplier = Self::ExtensionPacking::from_base_fn(|i| { - Base::Packing::from(powers[Base::Packing::WIDTH].as_base_slice()[i]) - }); - - core::iter::successors(Some(current), move |¤t| Some(current * multiplier)) - } -} - -impl ExtensionField for F { - type ExtensionPacking = F::Packing; -} - -impl AbstractExtensionField for AF { - const D: usize = 1; - - fn from_base(b: AF) -> Self { b } - - fn from_base_slice(bs: &[AF]) -> Self { - assert_eq!(bs.len(), 1); - bs[0].clone() - } - - fn from_base_fn AF>(mut f: F) -> Self { f(0) } - - fn as_base_slice(&self) -> &[AF] { slice::from_ref(self) } -} - -/// A field which supplies information like the two-adicity of its multiplicative group, and methods -/// for obtaining two-adic generators. -pub trait TwoAdicField: Field { - /// The number of factors of two in this field's multiplicative group. - const TWO_ADICITY: usize; - - /// Returns a generator of the multiplicative group of order `2^bits`. - /// Assumes `bits < TWO_ADICITY`, otherwise the result is undefined. - #[must_use] - fn two_adic_generator(bits: usize) -> Self; -} - -/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`. -#[derive(Clone, Debug)] -pub struct Powers { - pub base: F, - pub current: F, -} - -impl Iterator for Powers { - type Item = AF; - - fn next(&mut self) -> Option { - let result = self.current.clone(); - self.current *= self.base.clone(); - Some(result) - } -} - -/// like `Powers`, but packed into `PackedField` elements -#[derive(Clone, Debug)] -pub struct PackedPowers> { - // base ** P::WIDTH - pub multiplier: P, - pub current: P, -} - -impl> Iterator for PackedPowers { - type Item = P; - - fn next(&mut self) -> Option

{ - let result = self.current; - self.current *= self.multiplier; - Some(result) - } -} diff --git a/field/src/helpers.rs b/field/src/helpers.rs deleted file mode 100644 index f4591be8..00000000 --- a/field/src/helpers.rs +++ /dev/null @@ -1,167 +0,0 @@ -use alloc::{vec, vec::Vec}; -use core::{array, iter::Sum, ops::Mul}; - -use num_bigint::BigUint; - -use crate::{field::Field, AbstractField, PrimeField, PrimeField32, TwoAdicField}; - -/// Computes `Z_H(x)`, where `Z_H` is the zerofier of a multiplicative subgroup of order `2^log_n`. -pub fn two_adic_subgroup_zerofier(log_n: usize, x: F) -> F { - x.exp_power_of_2(log_n) - F::one() -} - -/// Computes `Z_{sH}(x)`, where `Z_{sH}` is the zerofier of the given coset of a multiplicative -/// subgroup of order `2^log_n`. -pub fn two_adic_coset_zerofier(log_n: usize, shift: F, x: F) -> F { - x.exp_power_of_2(log_n) - shift.exp_power_of_2(log_n) -} - -/// Computes a multiplicative subgroup whose order is known in advance. -pub fn cyclic_subgroup_known_order( - generator: F, - order: usize, -) -> impl Iterator + Clone { - generator.powers().take(order) -} - -/// Computes a coset of a multiplicative subgroup whose order is known in advance. -pub fn cyclic_subgroup_coset_known_order( - generator: F, - shift: F, - order: usize, -) -> impl Iterator + Clone { - cyclic_subgroup_known_order(generator, order).map(move |x| x * shift) -} - -#[must_use] -pub fn add_vecs(v: Vec, w: Vec) -> Vec { - assert_eq!(v.len(), w.len()); - v.into_iter().zip(w).map(|(x, y)| x + y).collect() -} - -pub fn sum_vecs>>(iter: I) -> Vec { - iter.reduce(|v, w| add_vecs(v, w)).expect("sum_vecs: empty iterator") -} - -pub fn scale_vec(s: F, vec: Vec) -> Vec { vec.into_iter().map(|x| s * x).collect() } - -/// `x += y * s`, where `s` is a scalar. -pub fn add_scaled_slice_in_place(x: &mut [F], y: Y, s: F) -where - F: Field, - Y: Iterator, { - // TODO: Use PackedField - x.iter_mut().zip(y).for_each(|(x_i, y_i)| *x_i += y_i * s); -} - -/// Extend a field `AF` element `x` to an array of length `D` -/// by filling zeros. -pub fn field_to_array(x: AF) -> [AF; D] { - let mut arr = array::from_fn(|_| AF::zero()); - arr[0] = x; - arr -} - -/// Naive polynomial multiplication. -pub fn naive_poly_mul(a: &[AF], b: &[AF]) -> Vec { - // Grade school algorithm - let mut product = vec![AF::zero(); a.len() + b.len() - 1]; - for (i, c1) in a.iter().enumerate() { - for (j, c2) in b.iter().enumerate() { - product[i + j] += c1.clone() * c2.clone(); - } - } - product -} - -/// Expand a product of binomials (x - roots[0])(x - roots[1]).. into polynomial coefficients. -pub fn binomial_expand(roots: &[AF]) -> Vec { - let mut coeffs = vec![AF::zero(); roots.len() + 1]; - coeffs[0] = AF::one(); - for (i, x) in roots.iter().enumerate() { - for j in (1..i + 2).rev() { - coeffs[j] = coeffs[j - 1].clone() - x.clone() * coeffs[j].clone(); - } - coeffs[0] *= -x.clone(); - } - coeffs -} - -pub fn eval_poly(poly: &[AF], x: AF) -> AF { - let mut acc = AF::zero(); - for coeff in poly.iter().rev() { - acc *= x.clone(); - acc += coeff.clone(); - } - acc -} - -/// Given an element x from a 32 bit field F_P compute x/2. -#[inline] -pub fn halve_u32(input: u32) -> u32 { - let shift = (P + 1) >> 1; - let shr = input >> 1; - let lo_bit = input & 1; - let shr_corr = shr + shift; - if lo_bit == 0 { - shr - } else { - shr_corr - } -} - -/// Given an element x from a 64 bit field F_P compute x/2. -#[inline] -pub fn halve_u64(input: u64) -> u64 { - let shift = (P + 1) >> 1; - let shr = input >> 1; - let lo_bit = input & 1; - let shr_corr = shr + shift; - if lo_bit == 0 { - shr - } else { - shr_corr - } -} - -/// Given a slice of SF elements, reduce them to a TF element using a 2^32-base decomposition. -pub fn reduce_32(vals: &[SF]) -> TF { - let po2 = TF::from_canonical_u64(1u64 << 32); - let mut result = TF::zero(); - for val in vals.iter().rev() { - result = result * po2 + TF::from_canonical_u32(val.as_canonical_u32()); - } - result -} - -/// Given an SF element, split it to a vector of TF elements using a 2^64-base decomposition. -/// -/// We use a 2^64-base decomposition for a field of size ~2^32 because then the bias will be -/// at most ~1/2^32 for each element after the reduction. -pub fn split_32(val: SF, n: usize) -> Vec { - let po2 = BigUint::from(1u128 << 64); - let mut val = val.as_canonical_biguint(); - let mut result = Vec::new(); - for _ in 0..n { - let mask: BigUint = po2.clone() - BigUint::from(1u128); - let digit: BigUint = val.clone() & mask; - let digit_u64s = digit.to_u64_digits(); - if !digit_u64s.is_empty() { - result.push(TF::from_wrapped_u64(digit_u64s[0])); - } else { - result.push(TF::zero()) - } - val /= po2.clone(); - } - result -} - -/// Maximally generic dot product. -pub fn dot_product(li: LI, ri: RI) -> S -where - LI: Iterator, - RI: Iterator, - LI::Item: Mul, - S: Sum<>::Output>, { - li.zip(ri).map(|(l, r)| l * r).sum() -} diff --git a/field/src/lib.rs b/field/src/lib.rs deleted file mode 100644 index 8f483393..00000000 --- a/field/src/lib.rs +++ /dev/null @@ -1,20 +0,0 @@ -//! A framework for finite fields. - -#![no_std] - -extern crate alloc; - -mod array; -mod batch_inverse; -mod exponentiation; -pub mod extension; -mod field; -mod helpers; -mod packed; - -pub use array::*; -pub use batch_inverse::*; -pub use exponentiation::*; -pub use field::*; -pub use helpers::*; -pub use packed::*; diff --git a/field/src/packed.rs b/field/src/packed.rs deleted file mode 100644 index 0ce8551e..00000000 --- a/field/src/packed.rs +++ /dev/null @@ -1,173 +0,0 @@ -use core::{ - mem, - ops::{Add, AddAssign, Div, Mul, MulAssign, Sub, SubAssign}, - slice, -}; - -use crate::{field::Field, AbstractField}; - -/// A trait to constrain types that can be packed into a packed value. -/// -/// The `Packable` trait allows us to specify implementations for potentially conflicting types. -pub trait Packable: 'static + Default + Copy + Send + Sync + PartialEq + Eq {} - -/// # Safety -/// - `WIDTH` is assumed to be a power of 2. -/// - If `P` implements `PackedField` then `P` must be castable to/from `[P::Value; P::WIDTH]` -/// without UB. -pub unsafe trait PackedValue: 'static + Copy + From + Send + Sync { - type Value: Packable; - - const WIDTH: usize; - - fn from_slice(slice: &[Self::Value]) -> &Self; - fn from_slice_mut(slice: &mut [Self::Value]) -> &mut Self; - - /// Similar to `core:array::from_fn`. - fn from_fn(f: F) -> Self - where F: FnMut(usize) -> Self::Value; - - fn as_slice(&self) -> &[Self::Value]; - fn as_slice_mut(&mut self) -> &mut [Self::Value]; - - fn pack_slice(buf: &[Self::Value]) -> &[Self] { - // Sources vary, but this should be true on all platforms we care about. - // This should be a const assert, but trait methods can't access `Self` in a const context, - // even with inner struct instantiation. So we will trust LLVM to optimize this out. - assert!(mem::align_of::() <= mem::align_of::()); - assert!( - buf.len() % Self::WIDTH == 0, - "Slice length (got {}) must be a multiple of packed field width ({}).", - buf.len(), - Self::WIDTH - ); - let buf_ptr = buf.as_ptr().cast::(); - let n = buf.len() / Self::WIDTH; - unsafe { slice::from_raw_parts(buf_ptr, n) } - } - - fn pack_slice_with_suffix(buf: &[Self::Value]) -> (&[Self], &[Self::Value]) { - let (packed, suffix) = buf.split_at(buf.len() - buf.len() % Self::WIDTH); - (Self::pack_slice(packed), suffix) - } - - fn pack_slice_mut(buf: &mut [Self::Value]) -> &mut [Self] { - assert!(mem::align_of::() <= mem::align_of::()); - assert!( - buf.len() % Self::WIDTH == 0, - "Slice length (got {}) must be a multiple of packed field width ({}).", - buf.len(), - Self::WIDTH - ); - let buf_ptr = buf.as_mut_ptr().cast::(); - let n = buf.len() / Self::WIDTH; - unsafe { slice::from_raw_parts_mut(buf_ptr, n) } - } - - fn pack_slice_with_suffix_mut(buf: &mut [Self::Value]) -> (&mut [Self], &mut [Self::Value]) { - let (packed, suffix) = buf.split_at_mut(buf.len() - buf.len() % Self::WIDTH); - (Self::pack_slice_mut(packed), suffix) - } - - fn unpack_slice(buf: &[Self]) -> &[Self::Value] { - assert!(mem::align_of::() >= mem::align_of::()); - let buf_ptr = buf.as_ptr().cast::(); - let n = buf.len() * Self::WIDTH; - unsafe { slice::from_raw_parts(buf_ptr, n) } - } -} - -/// # Safety -/// - See `PackedValue` above. -pub unsafe trait PackedField: AbstractField - + PackedValue - + From - + Add - + AddAssign - + Sub - + SubAssign - + Mul - + MulAssign - // TODO: Implement packed / packed division - + Div -{ - type Scalar: Field + Add + Mul + Sub; - - - - /// Take interpret two vectors as chunks of `block_len` elements. Unpack and interleave those - /// chunks. This is best seen with an example. If we have: - /// ```text - /// A = [x0, y0, x1, y1] - /// B = [x2, y2, x3, y3] - /// ``` - /// - /// then - /// - /// ```text - /// interleave(A, B, 1) = ([x0, x2, x1, x3], [y0, y2, y1, y3]) - /// ``` - /// - /// Pairs that were adjacent in the input are at corresponding positions in the output. - /// - /// `r` lets us set the size of chunks we're interleaving. If we set `block_len = 2`, then for - /// - /// ```text - /// A = [x0, x1, y0, y1] - /// B = [x2, x3, y2, y3] - /// ``` - /// - /// we obtain - /// - /// ```text - /// interleave(A, B, block_len) = ([x0, x1, x2, x3], [y0, y1, y2, y3]) - /// ``` - /// - /// We can also think about this as stacking the vectors, dividing them into 2x2 matrices, and - /// transposing those matrices. - /// - /// When `block_len = WIDTH`, this operation is a no-op. `block_len` must divide `WIDTH`. Since - /// `WIDTH` is specified to be a power of 2, `block_len` must also be a power of 2. It cannot be - /// 0 and it cannot exceed `WIDTH`. - fn interleave(&self, other: Self, block_len: usize) -> (Self, Self); -} - -unsafe impl PackedValue for T { - type Value = Self; - - const WIDTH: usize = 1; - - fn from_slice(slice: &[Self::Value]) -> &Self { &slice[0] } - - fn from_slice_mut(slice: &mut [Self::Value]) -> &mut Self { &mut slice[0] } - - fn from_fn(mut f: Fn) -> Self - where Fn: FnMut(usize) -> Self::Value { - f(0) - } - - fn as_slice(&self) -> &[Self::Value] { slice::from_ref(self) } - - fn as_slice_mut(&mut self) -> &mut [Self::Value] { slice::from_mut(self) } -} - -unsafe impl PackedField for F { - type Scalar = Self; - - fn interleave(&self, other: Self, block_len: usize) -> (Self, Self) { - match block_len { - 1 => (*self, other), - _ => panic!("unsupported block length"), - } - } -} - -impl Packable for u8 {} - -impl Packable for u16 {} - -impl Packable for u32 {} - -impl Packable for u64 {} - -impl Packable for u128 {} diff --git a/ronkathon/Cargo.toml b/ronkathon/Cargo.toml deleted file mode 100644 index 6443ab10..00000000 --- a/ronkathon/Cargo.toml +++ /dev/null @@ -1,12 +0,0 @@ -[package] -authors =["Pluto Authors"] -description="""ronkathon""" -edition ="2021" -license ="Apache2.0 OR MIT" -name ="ronkathon" -repository ="https://github.com/thor314/ronkathon" -version ="0.1.0" - -[dependencies] -anyhow ="1.0" -p3-field = { path = "../field" } diff --git a/ronkathon/rust-toolchain.toml b/rust-toolchain.toml similarity index 100% rename from ronkathon/rust-toolchain.toml rename to rust-toolchain.toml diff --git a/ronkathon/src/curve.rs b/src/curve.rs similarity index 100% rename from ronkathon/src/curve.rs rename to src/curve.rs diff --git a/ronkathon/src/lib.rs b/src/lib.rs similarity index 100% rename from ronkathon/src/lib.rs rename to src/lib.rs diff --git a/util/Cargo.toml b/util/Cargo.toml deleted file mode 100644 index 21152b35..00000000 --- a/util/Cargo.toml +++ /dev/null @@ -1,8 +0,0 @@ -[package] -name = "p3-util" -version = "0.1.0" -edition = "2021" -license = "MIT OR Apache-2.0" - -[dependencies] -serde = { version = "1.0", default-features = false } diff --git a/util/src/array_serialization.rs b/util/src/array_serialization.rs deleted file mode 100644 index 4754dddf..00000000 --- a/util/src/array_serialization.rs +++ /dev/null @@ -1,53 +0,0 @@ -use alloc::vec::Vec; -use core::marker::PhantomData; - -use serde::{ - de::{SeqAccess, Visitor}, - ser::SerializeTuple, - Deserialize, Deserializer, Serialize, Serializer, -}; - -pub fn serialize( - data: &[T; N], - ser: S, -) -> Result { - let mut s = ser.serialize_tuple(N)?; - for item in data { - s.serialize_element(item)?; - } - s.end() -} - -struct ArrayVisitor(PhantomData); - -impl<'de, T, const N: usize> Visitor<'de> for ArrayVisitor -where T: Deserialize<'de> -{ - type Value = [T; N]; - - fn expecting(&self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { - formatter.write_fmt(format_args!("an array of length {}", N)) - } - - #[inline] - fn visit_seq(self, mut seq: A) -> Result - where A: SeqAccess<'de> { - let mut data = Vec::with_capacity(N); - for _ in 0..N { - match seq.next_element()? { - Some(val) => data.push(val), - None => return Err(serde::de::Error::invalid_length(N, &self)), - } - } - match data.try_into() { - Ok(arr) => Ok(arr), - Err(_) => unreachable!(), - } - } -} -pub fn deserialize<'de, D, T, const N: usize>(deserializer: D) -> Result<[T; N], D::Error> -where - D: Deserializer<'de>, - T: Deserialize<'de>, { - deserializer.deserialize_tuple(N, ArrayVisitor::(PhantomData)) -} diff --git a/util/src/lib.rs b/util/src/lib.rs deleted file mode 100644 index 359a4070..00000000 --- a/util/src/lib.rs +++ /dev/null @@ -1,145 +0,0 @@ -//! Various simple utilities. - -#![no_std] - -extern crate alloc; - -use alloc::vec::Vec; -use core::hint::unreachable_unchecked; - -pub mod array_serialization; -pub mod linear_map; - -/// Computes `ceil(a / b)`. Assumes `a + b` does not overflow. -#[must_use] -pub const fn ceil_div_usize(a: usize, b: usize) -> usize { (a + b - 1) / b } - -/// Computes `ceil(log_2(n))`. -#[must_use] -pub const fn log2_ceil_usize(n: usize) -> usize { - (usize::BITS - n.saturating_sub(1).leading_zeros()) as usize -} - -#[must_use] -pub fn log2_ceil_u64(n: u64) -> u64 { (u64::BITS - n.saturating_sub(1).leading_zeros()).into() } - -/// Computes `log_2(n)` -/// -/// # Panics -/// Panics if `n` is not a power of two. -#[must_use] -#[inline] -pub fn log2_strict_usize(n: usize) -> usize { - let res = n.trailing_zeros(); - assert_eq!(n.wrapping_shr(res), 1, "Not a power of two: {n}"); - res as usize -} - -/// Returns `[0, ..., N - 1]`. -#[must_use] -pub const fn indices_arr() -> [usize; N] { - let mut indices_arr = [0; N]; - let mut i = 0; - while i < N { - indices_arr[i] = i; - i += 1; - } - indices_arr -} - -#[inline] -pub const fn reverse_bits(x: usize, n: usize) -> usize { - reverse_bits_len(x, n.trailing_zeros() as usize) -} - -#[inline] -pub const fn reverse_bits_len(x: usize, bit_len: usize) -> usize { - // NB: The only reason we need overflowing_shr() here as opposed - // to plain '>>' is to accommodate the case n == num_bits == 0, - // which would become `0 >> 64`. Rust thinks that any shift of 64 - // bits causes overflow, even when the argument is zero. - x.reverse_bits().overflowing_shr(usize::BITS - bit_len as u32).0 -} - -pub fn reverse_slice_index_bits(vals: &mut [F]) { - let n = vals.len(); - if n == 0 { - return; - } - let log_n = log2_strict_usize(n); - - for i in 0..n { - let j = reverse_bits_len(i, log_n); - if i < j { - vals.swap(i, j); - } - } -} - -#[inline(always)] -pub fn assume(p: bool) { - debug_assert!(p); - if !p { - unsafe { - unreachable_unchecked(); - } - } -} - -/// Try to force Rust to emit a branch. Example: -/// -/// ```no_run -/// let x = 100; -/// if x > 20 { -/// println!("x is big!"); -/// p3_util::branch_hint(); -/// } else { -/// println!("x is small!"); -/// } -/// ``` -/// -/// This function has no semantics. It is a hint only. -#[inline(always)] -pub fn branch_hint() { - // NOTE: These are the currently supported assembly architectures. See the - // [nightly reference](https://doc.rust-lang.org/nightly/reference/inline-assembly.html) for - // the most up-to-date list. - #[cfg(any( - target_arch = "aarch64", - target_arch = "arm", - target_arch = "riscv32", - target_arch = "riscv64", - target_arch = "x86", - target_arch = "x86_64", - ))] - unsafe { - core::arch::asm!("", options(nomem, nostack, preserves_flags)); - } -} - -/// Convenience methods for Vec. -pub trait VecExt { - /// Push `elem` and return a reference to it. - fn pushed_ref(&mut self, elem: T) -> &T; - /// Push `elem` and return a mutable reference to it. - fn pushed_mut(&mut self, elem: T) -> &mut T; -} - -impl VecExt for alloc::vec::Vec { - fn pushed_ref(&mut self, elem: T) -> &T { - self.push(elem); - self.last().unwrap() - } - - fn pushed_mut(&mut self, elem: T) -> &mut T { - self.push(elem); - self.last_mut().unwrap() - } -} - -pub fn transpose_vec(v: Vec>) -> Vec> { - assert!(!v.is_empty()); - let len = v[0].len(); - let mut iters: Vec<_> = v.into_iter().map(|n| n.into_iter()).collect(); - (0..len).map(|_| iters.iter_mut().map(|n| n.next().unwrap()).collect::>()).collect() -} diff --git a/util/src/linear_map.rs b/util/src/linear_map.rs deleted file mode 100644 index 6dc521d9..00000000 --- a/util/src/linear_map.rs +++ /dev/null @@ -1,65 +0,0 @@ -use alloc::vec::Vec; -use core::mem; - -use crate::VecExt; - -/// O(n) Vec-backed map for keys that only implement Eq. -/// Only use this for a very small number of keys, operations -/// on it can easily become O(n^2). -#[derive(Debug)] -pub struct LinearMap(Vec<(K, V)>); - -impl Default for LinearMap { - fn default() -> Self { Self(Default::default()) } -} - -impl LinearMap { - pub fn new() -> Self { Default::default() } - - pub fn get(&self, k: &K) -> Option<&V> { self.0.iter().find(|(kk, _)| kk == k).map(|(_, v)| v) } - - pub fn get_mut(&mut self, k: &K) -> Option<&mut V> { - self.0.iter_mut().find(|(kk, _)| kk == k).map(|(_, v)| v) - } - - /// This is O(n), because we check for an existing entry. - pub fn insert(&mut self, k: K, mut v: V) -> Option { - if let Some(vv) = self.get_mut(&k) { - mem::swap(&mut v, vv); - Some(v) - } else { - self.0.push((k, v)); - None - } - } - - pub fn get_or_insert_with(&mut self, k: K, f: impl FnOnce() -> V) -> &mut V { - let existing = self.0.iter().position(|(kk, _)| kk == &k); - if let Some(idx) = existing { - &mut self.0[idx].1 - } else { - let slot = self.0.pushed_mut((k, f())); - &mut slot.1 - } - } - - pub fn values(&self) -> impl Iterator { self.0.iter().map(|(_, v)| v) } -} - -impl FromIterator<(K, V)> for LinearMap { - /// This calls `insert` in a loop, so is O(n^2)!! - fn from_iter>(iter: T) -> Self { - let mut me = LinearMap::default(); - for (k, v) in iter { - me.insert(k, v); - } - me - } -} - -impl IntoIterator for LinearMap { - type IntoIter = as IntoIterator>::IntoIter; - type Item = (K, V); - - fn into_iter(self) -> Self::IntoIter { self.0.into_iter() } -}