diff --git a/Cargo.toml b/Cargo.toml index 5ae5527f..2af310fd 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -1,11 +1,8 @@ -[package] -authors =["Pluto Authors"] -description="""ronkathon""" -edition ="2021" -license ="Apache2.0 OR MIT" -name ="ronkathon" -repository ="https://github.com/thor314/ronkathon" -version ="0.1.0" +[workspace] +resolver = "2" -[dependencies] -anyhow ="1.0" +members = [ + "ronkathon", + "field", + "util" +] diff --git a/field/Cargo.toml b/field/Cargo.toml new file mode 100644 index 00000000..33faa451 --- /dev/null +++ b/field/Cargo.toml @@ -0,0 +1,14 @@ +[package] +name = "p3-field" +version = "0.1.0" +edition = "2021" +license = "MIT OR Apache-2.0" + +[dependencies] +p3-util = { path = "../util" } +num-bigint = { version = "0.4.3", default-features = false } +num-traits = { version = "0.2.18", default-features = false } + +itertools = "0.12.0" +rand = "0.8.5" +serde = { version = "1.0", default-features = false, features = ["derive"] } diff --git a/field/src/array.rs b/field/src/array.rs new file mode 100644 index 00000000..614eb4be --- /dev/null +++ b/field/src/array.rs @@ -0,0 +1,148 @@ +use core::{ + array, + iter::{Product, Sum}, + ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}, +}; + +use crate::{AbstractField, Field}; + +#[derive(Clone, Copy, Debug, Eq, PartialEq)] +pub struct FieldArray(pub [F; N]); + +impl Default for FieldArray { + fn default() -> Self { Self::zero() } +} + +impl From for FieldArray { + fn from(val: F) -> Self { [val; N].into() } +} + +impl From<[F; N]> for FieldArray { + fn from(arr: [F; N]) -> Self { Self(arr) } +} + +impl AbstractField for FieldArray { + type F = F; + + fn zero() -> Self { FieldArray([F::zero(); N]) } + + fn one() -> Self { FieldArray([F::one(); N]) } + + fn two() -> Self { FieldArray([F::two(); N]) } + + fn neg_one() -> Self { FieldArray([F::neg_one(); N]) } + + #[inline] + fn from_f(f: Self::F) -> Self { f.into() } + + fn from_bool(b: bool) -> Self { [F::from_bool(b); N].into() } + + fn from_canonical_u8(n: u8) -> Self { [F::from_canonical_u8(n); N].into() } + + fn from_canonical_u16(n: u16) -> Self { [F::from_canonical_u16(n); N].into() } + + fn from_canonical_u32(n: u32) -> Self { [F::from_canonical_u32(n); N].into() } + + fn from_canonical_u64(n: u64) -> Self { [F::from_canonical_u64(n); N].into() } + + fn from_canonical_usize(n: usize) -> Self { [F::from_canonical_usize(n); N].into() } + + fn from_wrapped_u32(n: u32) -> Self { [F::from_wrapped_u32(n); N].into() } + + fn from_wrapped_u64(n: u64) -> Self { [F::from_wrapped_u64(n); N].into() } + + fn generator() -> Self { [F::generator(); N].into() } +} + +impl Add for FieldArray { + type Output = Self; + + #[inline] + fn add(self, rhs: Self) -> Self::Output { array::from_fn(|i| self.0[i] + rhs.0[i]).into() } +} + +impl Add for FieldArray { + type Output = Self; + + #[inline] + fn add(self, rhs: F) -> Self::Output { self.0.map(|x| x + rhs).into() } +} + +impl AddAssign for FieldArray { + #[inline] + fn add_assign(&mut self, rhs: Self) { self.0.iter_mut().zip(rhs.0).for_each(|(x, y)| *x += y); } +} + +impl AddAssign for FieldArray { + #[inline] + fn add_assign(&mut self, rhs: F) { self.0.iter_mut().for_each(|x| *x += rhs); } +} + +impl Sub for FieldArray { + type Output = Self; + + #[inline] + fn sub(self, rhs: Self) -> Self::Output { array::from_fn(|i| self.0[i] - rhs.0[i]).into() } +} + +impl Sub for FieldArray { + type Output = Self; + + #[inline] + fn sub(self, rhs: F) -> Self::Output { self.0.map(|x| x - rhs).into() } +} + +impl SubAssign for FieldArray { + #[inline] + fn sub_assign(&mut self, rhs: Self) { self.0.iter_mut().zip(rhs.0).for_each(|(x, y)| *x -= y); } +} + +impl SubAssign for FieldArray { + #[inline] + fn sub_assign(&mut self, rhs: F) { self.0.iter_mut().for_each(|x| *x -= rhs); } +} + +impl Neg for FieldArray { + type Output = Self; + + #[inline] + fn neg(self) -> Self::Output { self.0.map(|x| -x).into() } +} + +impl Mul for FieldArray { + type Output = Self; + + #[inline] + fn mul(self, rhs: Self) -> Self::Output { array::from_fn(|i| self.0[i] * rhs.0[i]).into() } +} + +impl Mul for FieldArray { + type Output = Self; + + #[inline] + fn mul(self, rhs: F) -> Self::Output { self.0.map(|x| x * rhs).into() } +} + +impl MulAssign for FieldArray { + #[inline] + fn mul_assign(&mut self, rhs: Self) { self.0.iter_mut().zip(rhs.0).for_each(|(x, y)| *x *= y); } +} + +impl MulAssign for FieldArray { + #[inline] + fn mul_assign(&mut self, rhs: F) { self.0.iter_mut().for_each(|x| *x *= rhs); } +} + +impl Sum for FieldArray { + #[inline] + fn sum>(iter: I) -> Self { + iter.reduce(|lhs, rhs| lhs + rhs).unwrap_or(Self::zero()) + } +} + +impl Product for FieldArray { + #[inline] + fn product>(iter: I) -> Self { + iter.reduce(|lhs, rhs| lhs * rhs).unwrap_or(Self::one()) + } +} diff --git a/field/src/batch_inverse.rs b/field/src/batch_inverse.rs new file mode 100644 index 00000000..dd591bf7 --- /dev/null +++ b/field/src/batch_inverse.rs @@ -0,0 +1,93 @@ +use alloc::{vec, vec::Vec}; + +use crate::field::Field; + +/// Batch multiplicative inverses with Montgomery's trick +/// This is Montgomery's trick. At a high level, we invert the product of the given field +/// elements, then derive the individual inverses from that via multiplication. +/// +/// The usual Montgomery trick involves calculating an array of cumulative products, +/// resulting in a long dependency chain. To increase instruction-level parallelism, we +/// compute WIDTH separate cumulative product arrays that only meet at the end. +/// +/// # Panics +/// Might panic if asserts or unwraps uncover a bug. +pub fn batch_multiplicative_inverse(x: &[F]) -> Vec { + // Higher WIDTH increases instruction-level parallelism, but too high a value will cause us + // to run out of registers. + const WIDTH: usize = 4; + // JN note: WIDTH is 4. The code is specialized to this value and will need + // modification if it is changed. I tried to make it more generic, but Rust's const + // generics are not yet good enough. + + // Handle special cases. Paradoxically, below is repetitive but concise. + // The branches should be very predictable. + let n = x.len(); + if n == 0 { + return Vec::new(); + } else if n == 1 { + return vec![x[0].inverse()]; + } else if n == 2 { + let x01 = x[0] * x[1]; + let x01inv = x01.inverse(); + return vec![x01inv * x[1], x01inv * x[0]]; + } else if n == 3 { + let x01 = x[0] * x[1]; + let x012 = x01 * x[2]; + let x012inv = x012.inverse(); + let x01inv = x012inv * x[2]; + return vec![x01inv * x[1], x01inv * x[0], x012inv * x01]; + } + debug_assert!(n >= WIDTH); + + // Buf is reused for a few things to save allocations. + // Fill buf with cumulative product of x, only taking every 4th value. Concretely, buf will + // be [ + // x[0], x[1], x[2], x[3], + // x[0] * x[4], x[1] * x[5], x[2] * x[6], x[3] * x[7], + // x[0] * x[4] * x[8], x[1] * x[5] * x[9], x[2] * x[6] * x[10], x[3] * x[7] * x[11], + // ... + // ]. + // If n is not a multiple of WIDTH, the result is truncated from the end. For example, + // for n == 5, we get [x[0], x[1], x[2], x[3], x[0] * x[4]]. + let mut buf: Vec = Vec::with_capacity(n); + // cumul_prod holds the last WIDTH elements of buf. This is redundant, but it's how we + // convince LLVM to keep the values in the registers. + let mut cumul_prod: [F; WIDTH] = x[..WIDTH].try_into().unwrap(); + buf.extend(cumul_prod); + for (i, &xi) in x[WIDTH..].iter().enumerate() { + cumul_prod[i % WIDTH] *= xi; + buf.push(cumul_prod[i % WIDTH]); + } + debug_assert_eq!(buf.len(), n); + + let mut a_inv = { + // This is where the four dependency chains meet. + // Take the last four elements of buf and invert them all. + let c01 = cumul_prod[0] * cumul_prod[1]; + let c23 = cumul_prod[2] * cumul_prod[3]; + let c0123 = c01 * c23; + let c0123inv = c0123.inverse(); + let c01inv = c0123inv * c23; + let c23inv = c0123inv * c01; + [c01inv * cumul_prod[1], c01inv * cumul_prod[0], c23inv * cumul_prod[3], c23inv * cumul_prod[2]] + }; + + for i in (WIDTH..n).rev() { + // buf[i - WIDTH] has not been written to by this loop, so it equals + // x[i % WIDTH] * x[i % WIDTH + WIDTH] * ... * x[i - WIDTH]. + buf[i] = buf[i - WIDTH] * a_inv[i % WIDTH]; + // buf[i] now holds the inverse of x[i]. + a_inv[i % WIDTH] *= x[i]; + } + for i in (0..WIDTH).rev() { + buf[i] = a_inv[i]; + } + + for (&bi, &xi) in buf.iter().zip(x) { + // Sanity check only. + debug_assert_eq!(bi * xi, F::one()); + } + + buf +} diff --git a/field/src/exponentiation.rs b/field/src/exponentiation.rs new file mode 100644 index 00000000..f9febeb1 --- /dev/null +++ b/field/src/exponentiation.rs @@ -0,0 +1,122 @@ +use crate::AbstractField; + +pub fn exp_u64_by_squaring(val: AF, power: u64) -> AF { + let mut current = val; + let mut product = AF::one(); + + for j in 0..bits_u64(power) { + if (power >> j & 1) != 0 { + product *= current.clone(); + } + current = current.square(); + } + product +} + +const fn bits_u64(n: u64) -> usize { (64 - n.leading_zeros()) as usize } + +pub fn exp_1717986917(val: AF) -> AF { + // Note that 5 * 1717986917 = 4*(2^31 - 2) + 1 = 1 mod p - 1. + // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{1717986917})^5 = a. + // Note the binary expansion: 1717986917 = 1100110011001100110011001100101_2 + // This uses 30 Squares + 7 Multiplications => 37 Operations total. + // Suspect it's possible to improve this with enough effort. For example 1717986918 takes only 4 + // Multiplications. + let p1 = val; + let p10 = p1.square(); + let p11 = p10.clone() * p1; + let p101 = p10 * p11.clone(); + let p110000 = p11.exp_power_of_2(4); + let p110011 = p110000 * p11.clone(); + let p11001100000000 = p110011.exp_power_of_2(8); + let p11001100110011 = p11001100000000.clone() * p110011; + let p1100110000000000000000 = p11001100000000.exp_power_of_2(8); + let p1100110011001100110011 = p1100110000000000000000 * p11001100110011; + let p11001100110011001100110000 = p1100110011001100110011.exp_power_of_2(4); + let p11001100110011001100110011 = p11001100110011001100110000 * p11; + let p1100110011001100110011001100000 = p11001100110011001100110011.exp_power_of_2(5); + p1100110011001100110011001100000 * p101 +} + +pub fn exp_1420470955(val: AF) -> AF { + // Note that 3 * 1420470955 = 2*(2^31 - 2^24) + 1 = 1 mod (p - 1). + // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{1420470955})^3 = a. + // Note the binary expansion: 1420470955 = 1010100101010101010101010101011_2 + // This uses 29 Squares + 7 Multiplications => 36 Operations total. + // Suspect it's possible to improve this with enough effort. + let p1 = val; + let p100 = p1.exp_power_of_2(2); + let p101 = p100.clone() * p1.clone(); + let p10000 = p100.exp_power_of_2(2); + let p10101 = p10000 * p101; + let p10101000000 = p10101.clone().exp_power_of_2(6); + let p10101010101 = p10101000000.clone() * p10101.clone(); + let p101010010101 = p10101000000 * p10101010101.clone(); + let p101010010101000000000000 = p101010010101.exp_power_of_2(12); + let p101010010101010101010101 = p101010010101000000000000 * p10101010101; + let p101010010101010101010101000000 = p101010010101010101010101.exp_power_of_2(6); + let p101010010101010101010101010101 = p101010010101010101010101000000 * p10101; + let p1010100101010101010101010101010 = p101010010101010101010101010101.square(); + p1010100101010101010101010101010 * p1.clone() +} + +pub fn exp_1725656503(val: AF) -> AF { + // Note that 7 * 1725656503 = 6*(2^31 - 2^27) + 1 = 1 mod (p - 1). + // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{1725656503})^7 = a. + // Note the binary expansion: 1725656503 = 1100110110110110110110110110111_2 + // This uses 29 Squares + 8 Multiplications => 37 Operations total. + // Suspect it's possible to improve this with enough effort. + let p1 = val; + let p10 = p1.square(); + let p11 = p10 * p1.clone(); + let p110 = p11.square(); + let p111 = p110.clone() * p1; + let p11000 = p110.exp_power_of_2(2); + let p11011 = p11000.clone() * p11; + let p11000000 = p11000.exp_power_of_2(3); + let p11011011 = p11000000.clone() * p11011; + let p110011011 = p11011011.clone() * p11000000; + let p110011011000000000 = p110011011.exp_power_of_2(9); + let p110011011011011011 = p110011011000000000 * p11011011.clone(); + let p110011011011011011000000000 = p110011011011011011.exp_power_of_2(9); + let p110011011011011011011011011 = p110011011011011011000000000 * p11011011; + let p1100110110110110110110110110000 = p110011011011011011011011011.exp_power_of_2(4); + p1100110110110110110110110110000 * p111 +} + +pub fn exp_10540996611094048183(val: AF) -> AF { + // Note that 7*10540996611094048183 = 4*(2^64 - 2**32) + 1 = 1 mod (p - 1). + // Thus as a^{p - 1} = 1 for all a \in F_p, (a^{10540996611094048183})^7 = a. + // Also: 10540996611094048183 = + // 1001001001001001001001001001000110110110110110110110110110110111_2. This uses 63 Squares + 8 + // Multiplications => 71 Operations total. Suspect it's possible to improve this a little with + // enough effort. + let p1 = val; + let p10 = p1.square(); + let p11 = p10.clone() * p1.clone(); + let p100 = p10.square(); + let p111 = p100.clone() * p11.clone(); + let p100000000000000000000000000000000 = p100.exp_power_of_2(30); + let p100000000000000000000000000000011 = p100000000000000000000000000000000 * p11; + let p100000000000000000000000000000011000 = p100000000000000000000000000000011.exp_power_of_2(3); + let p100100000000000000000000000000011011 = + p100000000000000000000000000000011000 * p100000000000000000000000000000011; + let p100100000000000000000000000000011011000000 = + p100100000000000000000000000000011011.exp_power_of_2(6); + let p100100100100000000000000000000011011011011 = + p100100000000000000000000000000011011000000 * p100100000000000000000000000000011011.clone(); + let p100100100100000000000000000000011011011011000000000000 = + p100100100100000000000000000000011011011011.exp_power_of_2(12); + let p100100100100100100100100000000011011011011011011011011 = + p100100100100000000000000000000011011011011000000000000 + * p100100100100000000000000000000011011011011; + let p100100100100100100100100000000011011011011011011011011000000 = + p100100100100100100100100000000011011011011011011011011.exp_power_of_2(6); + let p100100100100100100100100100100011011011011011011011011011011 = + p100100100100100100100100000000011011011011011011011011000000 + * p100100000000000000000000000000011011; + let p1001001001001001001001001001000110110110110110110110110110110000 = + p100100100100100100100100100100011011011011011011011011011011.exp_power_of_2(4); + + p1001001001001001001001001001000110110110110110110110110110110000 * p111 +} diff --git a/field/src/extension/binomial_extension.rs b/field/src/extension/binomial_extension.rs new file mode 100644 index 00000000..a7b84b50 --- /dev/null +++ b/field/src/extension/binomial_extension.rs @@ -0,0 +1,512 @@ +use alloc::{format, string::ToString}; +use core::{ + array, + fmt::{self, Debug, Display, Formatter}, + iter::{Product, Sum}, + ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}, +}; + +use itertools::Itertools; +use num_bigint::BigUint; +use rand::{distributions::Standard, prelude::Distribution}; +use serde::{Deserialize, Serialize}; + +use super::{HasFrobenius, HasTwoAdicBionmialExtension}; +use crate::{ + extension::BinomiallyExtendable, field::Field, field_to_array, AbstractExtensionField, + AbstractField, ExtensionField, Packable, TwoAdicField, +}; + +#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize, Deserialize)] +pub struct BinomialExtensionField { + #[serde( + with = "p3_util::array_serialization", + bound(serialize = "AF: Serialize", deserialize = "AF: Deserialize<'de>") + )] + pub(crate) value: [AF; D], +} + +impl Default for BinomialExtensionField { + fn default() -> Self { Self { value: array::from_fn(|_| AF::zero()) } } +} + +impl From for BinomialExtensionField { + fn from(x: AF) -> Self { Self { value: field_to_array::(x) } } +} + +impl, const D: usize> Packable for BinomialExtensionField {} + +impl, const D: usize> ExtensionField + for BinomialExtensionField +{ + type ExtensionPacking = BinomialExtensionField; +} + +impl, const D: usize> HasFrobenius for BinomialExtensionField { + /// FrobeniusField automorphisms: x -> x^n, where n is the order of BaseField. + fn frobenius(&self) -> Self { self.repeated_frobenius(1) } + + /// Repeated Frobenius automorphisms: x -> x^(n^count). + /// + /// Follows precomputation suggestion in Section 11.3.3 of the + /// Handbook of Elliptic and Hyperelliptic Curve Cryptography. + fn repeated_frobenius(&self, count: usize) -> Self { + if count == 0 { + return *self; + } else if count >= D { + // x |-> x^(n^D) is the identity, so x^(n^count) == + // x^(n^(count % D)) + return self.repeated_frobenius(count % D); + } + let arr: &[F] = self.as_base_slice(); + + // z0 = DTH_ROOT^count = W^(k * count) where k = floor((n-1)/D) + let mut z0 = F::dth_root(); + for _ in 1..count { + z0 *= F::dth_root(); + } + + let mut res = [F::zero(); D]; + for (i, z) in z0.powers().take(D).enumerate() { + res[i] = arr[i] * z; + } + + Self::from_base_slice(&res) + } + + /// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography. + fn frobenius_inv(&self) -> Self { + // Writing 'a' for self, we need to compute a^(r-1): + // r = n^D-1/n-1 = n^(D-1)+n^(D-2)+...+n + let mut f = Self::one(); + for _ in 1..D { + f = (f * *self).frobenius(); + } + + // g = a^r is in the base field, so only compute that + // coefficient rather than the full product. + let a = self.value; + let b = f.value; + let mut g = F::zero(); + for i in 1..D { + g += a[i] * b[D - i]; + } + g *= F::w(); + g += a[0] * b[0]; + debug_assert_eq!(Self::from(g), *self * f); + + f * g.inverse() + } +} + +impl AbstractField for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type F = BinomialExtensionField; + + fn zero() -> Self { Self { value: field_to_array::(AF::zero()) } } + + fn one() -> Self { Self { value: field_to_array::(AF::one()) } } + + fn two() -> Self { Self { value: field_to_array::(AF::two()) } } + + fn neg_one() -> Self { Self { value: field_to_array::(AF::neg_one()) } } + + fn from_f(f: Self::F) -> Self { Self { value: f.value.map(AF::from_f) } } + + fn from_bool(b: bool) -> Self { AF::from_bool(b).into() } + + fn from_canonical_u8(n: u8) -> Self { AF::from_canonical_u8(n).into() } + + fn from_canonical_u16(n: u16) -> Self { AF::from_canonical_u16(n).into() } + + fn from_canonical_u32(n: u32) -> Self { AF::from_canonical_u32(n).into() } + + /// Convert from `u64`. Undefined behavior if the input is outside the canonical range. + fn from_canonical_u64(n: u64) -> Self { AF::from_canonical_u64(n).into() } + + /// Convert from `usize`. Undefined behavior if the input is outside the canonical range. + fn from_canonical_usize(n: usize) -> Self { AF::from_canonical_usize(n).into() } + + fn from_wrapped_u32(n: u32) -> Self { AF::from_wrapped_u32(n).into() } + + fn from_wrapped_u64(n: u64) -> Self { AF::from_wrapped_u64(n).into() } + + fn generator() -> Self { Self { value: AF::F::ext_generator().map(AF::from_f) } } + + #[inline(always)] + fn square(&self) -> Self { + match D { + 2 => { + let a = self.value.clone(); + let mut res = Self::default(); + res.value[0] = a[0].square() + a[1].square() * AF::from_f(AF::F::w()); + res.value[1] = a[0].clone() * a[1].double(); + res + }, + 3 => Self { value: cubic_square(&self.value, AF::F::w()).to_vec().try_into().unwrap() }, + _ => >::mul(self.clone(), self.clone()), + } + } +} + +impl, const D: usize> Field for BinomialExtensionField { + type Packing = Self; + + fn try_inverse(&self) -> Option { + if self.is_zero() { + return None; + } + + match D { + 2 => Some(Self::from_base_slice(&qudratic_inv(&self.value, F::w()))), + 3 => Some(Self::from_base_slice(&cubic_inv(&self.value, F::w()))), + _ => Some(self.frobenius_inv()), + } + } + + fn halve(&self) -> Self { Self { value: self.value.map(|x| x.halve()) } } + + fn order() -> BigUint { F::order().pow(D as u32) } +} + +impl Display for BinomialExtensionField +where F: BinomiallyExtendable +{ + fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { + if self.is_zero() { + write!(f, "0") + } else { + let str = self + .value + .iter() + .enumerate() + .filter(|(_, x)| !x.is_zero()) + .map(|(i, x)| match (i, x.is_one()) { + (0, _) => format!("{x}"), + (1, true) => "X".to_string(), + (1, false) => format!("{x} X"), + (_, true) => format!("X^{i}"), + (_, false) => format!("{x} X^{i}"), + }) + .join(" + "); + write!(f, "{}", str) + } + } +} + +impl Neg for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn neg(self) -> Self { Self { value: self.value.map(AF::neg) } } +} + +impl Add for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn add(self, rhs: Self) -> Self { + let mut res = self.value; + for (r, rhs_val) in res.iter_mut().zip(rhs.value) { + *r += rhs_val; + } + Self { value: res } + } +} + +impl Add for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn add(self, rhs: AF) -> Self { + let mut res = self.value; + res[0] += rhs; + Self { value: res } + } +} + +impl AddAssign for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + fn add_assign(&mut self, rhs: Self) { *self = self.clone() + rhs; } +} + +impl AddAssign for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + fn add_assign(&mut self, rhs: AF) { *self = self.clone() + rhs; } +} + +impl Sum for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + fn sum>(iter: I) -> Self { + let zero = Self { value: field_to_array::(AF::zero()) }; + iter.fold(zero, |acc, x| acc + x) + } +} + +impl Sub for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn sub(self, rhs: Self) -> Self { + let mut res = self.value; + for (r, rhs_val) in res.iter_mut().zip(rhs.value) { + *r -= rhs_val; + } + Self { value: res } + } +} + +impl Sub for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn sub(self, rhs: AF) -> Self { + let mut res = self.value; + res[0] -= rhs; + Self { value: res } + } +} + +impl SubAssign for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + #[inline] + fn sub_assign(&mut self, rhs: Self) { *self = self.clone() - rhs; } +} + +impl SubAssign for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + #[inline] + fn sub_assign(&mut self, rhs: AF) { *self = self.clone() - rhs; } +} + +impl Mul for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn mul(self, rhs: Self) -> Self { + let a = self.value; + let b = rhs.value; + let w = AF::F::w(); + let w_af = AF::from_f(w); + + match D { + 2 => { + let mut res = Self::default(); + res.value[0] = a[0].clone() * b[0].clone() + a[1].clone() * w_af * b[1].clone(); + res.value[1] = a[0].clone() * b[1].clone() + a[1].clone() * b[0].clone(); + res + }, + 3 => Self { value: cubic_mul(&a, &b, w).to_vec().try_into().unwrap() }, + _ => { + let mut res = Self::default(); + #[allow(clippy::needless_range_loop)] + for i in 0..D { + for j in 0..D { + if i + j >= D { + res.value[i + j - D] += a[i].clone() * w_af.clone() * b[j].clone(); + } else { + res.value[i + j] += a[i].clone() * b[j].clone(); + } + } + } + res + }, + } + } +} + +impl Mul for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + type Output = Self; + + #[inline] + fn mul(self, rhs: AF) -> Self { Self { value: self.value.map(|x| x * rhs.clone()) } } +} + +impl Product for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + fn product>(iter: I) -> Self { + let one = Self { value: field_to_array::(AF::one()) }; + iter.fold(one, |acc, x| acc * x) + } +} + +impl Div for BinomialExtensionField +where F: BinomiallyExtendable +{ + type Output = Self; + + #[allow(clippy::suspicious_arithmetic_impl)] + fn div(self, rhs: Self) -> Self::Output { self * rhs.inverse() } +} + +impl DivAssign for BinomialExtensionField +where F: BinomiallyExtendable +{ + fn div_assign(&mut self, rhs: Self) { *self = *self / rhs; } +} + +impl MulAssign for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + #[inline] + fn mul_assign(&mut self, rhs: Self) { *self = self.clone() * rhs; } +} + +impl MulAssign for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + fn mul_assign(&mut self, rhs: AF) { *self = self.clone() * rhs; } +} + +impl AbstractExtensionField for BinomialExtensionField +where + AF: AbstractField, + AF::F: BinomiallyExtendable, +{ + const D: usize = D; + + fn from_base(b: AF) -> Self { Self { value: field_to_array(b) } } + + fn from_base_slice(bs: &[AF]) -> Self { + Self { value: bs.to_vec().try_into().expect("slice has wrong length") } + } + + #[inline] + fn from_base_fn AF>(f: F) -> Self { Self { value: array::from_fn(f) } } + + fn as_base_slice(&self) -> &[AF] { &self.value } +} + +impl, const D: usize> Distribution> + for Standard +where Standard: Distribution +{ + fn sample(&self, rng: &mut R) -> BinomialExtensionField { + let mut res = [F::zero(); D]; + for r in res.iter_mut() { + *r = Standard.sample(rng); + } + BinomialExtensionField::::from_base_slice(&res) + } +} + +impl, const D: usize> TwoAdicField + for BinomialExtensionField +{ + const TWO_ADICITY: usize = F::EXT_TWO_ADICITY; + + fn two_adic_generator(bits: usize) -> Self { Self { value: F::ext_two_adic_generator(bits) } } +} + +/// Section 11.3.6b in Handbook of Elliptic and Hyperelliptic Curve Cryptography. +#[inline] +fn qudratic_inv(a: &[F], w: F) -> [F; 2] { + let scalar = (a[0].square() - w * a[1].square()).inverse(); + [a[0] * scalar, -a[1] * scalar] +} + +/// Section 11.3.6b in Handbook of Elliptic and Hyperelliptic Curve Cryptography. +#[inline] +fn cubic_inv(a: &[F], w: F) -> [F; 3] { + let a0_square = a[0].square(); + let a1_square = a[1].square(); + let a2_w = w * a[2]; + let a0_a1 = a[0] * a[1]; + + // scalar = (a0^3+wa1^3+w^2a2^3-3wa0a1a2)^-1 + let scalar = (a0_square * a[0] + w * a[1] * a1_square + a2_w.square() * a[2] + - (F::one() + F::two()) * a2_w * a0_a1) + .inverse(); + + // scalar*[a0^2-wa1a2, wa2^2-a0a1, a1^2-a0a2] + [ + scalar * (a0_square - a[1] * a2_w), + scalar * (a2_w * a[2] - a0_a1), + scalar * (a1_square - a[0] * a[2]), + ] +} + +/// karatsuba multiplication for cubic extension field +#[inline] +fn cubic_mul(a: &[AF], b: &[AF], w: AF::F) -> [AF; 3] { + let a0_b0 = a[0].clone() * b[0].clone(); + let a1_b1 = a[1].clone() * b[1].clone(); + let a2_b2 = a[2].clone() * b[2].clone(); + + let c0 = a0_b0.clone() + + ((a[1].clone() + a[2].clone()) * (b[1].clone() + b[2].clone()) + - a1_b1.clone() + - a2_b2.clone()) + * AF::from_f(w); + let c1 = + (a[0].clone() + a[1].clone()) * (b[0].clone() + b[1].clone()) - a0_b0.clone() - a1_b1.clone() + + a2_b2.clone() * AF::from_f(w); + let c2 = (a[0].clone() + a[2].clone()) * (b[0].clone() + b[2].clone()) - a0_b0 - a2_b2 + a1_b1; + + [c0, c1, c2] +} + +/// Section 11.3.6a in Handbook of Elliptic and Hyperelliptic Curve Cryptography. +#[inline] +fn cubic_square(a: &[AF], w: AF::F) -> [AF; 3] { + let w_a2 = a[2].clone() * AF::from_f(w); + + let c0 = a[0].square() + (a[1].clone() * w_a2.clone()).double(); + let c1 = w_a2 * a[2].clone() + (a[0].clone() * a[1].clone()).double(); + let c2 = a[1].square() + (a[0].clone() * a[2].clone()).double(); + + [c0, c1, c2] +} diff --git a/field/src/extension/complex.rs b/field/src/extension/complex.rs new file mode 100644 index 00000000..743f43da --- /dev/null +++ b/field/src/extension/complex.rs @@ -0,0 +1,87 @@ +use super::{BinomialExtensionField, BinomiallyExtendable, HasTwoAdicBionmialExtension}; +use crate::{AbstractExtensionField, AbstractField, Field}; + +pub type Complex = BinomialExtensionField; + +/// A field for which `p = 3 (mod 4)`. Equivalently, `-1` is not a square, +/// so the complex extension can be defined `F[X]/(X^2+1)`. +pub trait ComplexExtendable: Field { + /// The two-adicity of `p+1`, the order of the circle group. + const CIRCLE_TWO_ADICITY: usize; + + fn complex_generator() -> Complex; + + fn circle_two_adic_generator(bits: usize) -> Complex; +} + +impl BinomiallyExtendable<2> for F { + fn w() -> Self { F::neg_one() } + + fn dth_root() -> Self { + // since `p = 3 (mod 4)`, `(p-1)/2` is always odd, + // so `(-1)^((p-1)/2) = -1` + F::neg_one() + } + + fn ext_generator() -> [Self; 2] { F::complex_generator().value } +} + +/// Convenience methods for complex extensions +impl Complex { + pub const fn new(real: AF, imag: AF) -> Self { Self { value: [real, imag] } } + + pub fn new_real(real: AF) -> Self { Self::new(real, AF::zero()) } + + pub fn new_imag(imag: AF) -> Self { Self::new(AF::zero(), imag) } + + pub fn real(&self) -> AF { self.value[0].clone() } + + pub fn imag(&self) -> AF { self.value[1].clone() } + + pub fn conjugate(&self) -> Self { Self::new(self.real(), self.imag().neg()) } + + pub fn norm(&self) -> AF { self.real().square() + self.imag().square() } + + pub fn to_array(&self) -> [AF; 2] { self.value.clone() } + + // Sometimes we want to rotate over an extension that's not necessarily ComplexExtendable, + // but still on the circle. + pub fn rotate>(&self, rhs: Complex) -> Complex { + Complex::::new( + rhs.real() * self.real() - rhs.imag() * self.imag(), + rhs.imag() * self.real() + rhs.real() * self.imag(), + ) + } +} + +/// The complex extension of this field has a binomial extension. +pub trait HasComplexBinomialExtension: ComplexExtendable { + fn w() -> Complex; + fn dth_root() -> Complex; + fn ext_generator() -> [Complex; D]; +} + +impl BinomiallyExtendable for Complex +where F: HasComplexBinomialExtension +{ + fn w() -> Self { >::w() } + + fn dth_root() -> Self { >::dth_root() } + + fn ext_generator() -> [Self; D] { >::ext_generator() } +} + +/// The complex extension of this field has a two-adic binomial extension. +pub trait HasTwoAdicComplexBinomialExtension: + HasComplexBinomialExtension { + const COMPLEX_EXT_TWO_ADICITY: usize; + fn complex_ext_two_adic_generator(bits: usize) -> [Complex; D]; +} + +impl HasTwoAdicBionmialExtension for Complex +where F: HasTwoAdicComplexBinomialExtension +{ + const EXT_TWO_ADICITY: usize = F::COMPLEX_EXT_TWO_ADICITY; + + fn ext_two_adic_generator(bits: usize) -> [Self; D] { F::complex_ext_two_adic_generator(bits) } +} diff --git a/field/src/extension/mod.rs b/field/src/extension/mod.rs new file mode 100644 index 00000000..ea1c165e --- /dev/null +++ b/field/src/extension/mod.rs @@ -0,0 +1,56 @@ +use core::{debug_assert, debug_assert_eq, iter}; + +use crate::{field::Field, naive_poly_mul, ExtensionField}; + +mod binomial_extension; +mod complex; + +use alloc::{vec, vec::Vec}; + +pub use binomial_extension::*; +pub use complex::*; + +/// Binomial extension field trait. +/// A extension field with a irreducible polynomial X^d-W +/// such that the extension is `F[X]/(X^d-W)`. +pub trait BinomiallyExtendable: Field { + fn w() -> Self; + + // DTH_ROOT = W^((n - 1)/D). + // n is the order of base field. + // Only works when exists k such that n = kD + 1. + fn dth_root() -> Self; + + fn ext_generator() -> [Self; D]; +} + +pub trait HasFrobenius: ExtensionField { + fn frobenius(&self) -> Self; + fn repeated_frobenius(&self, count: usize) -> Self; + fn frobenius_inv(&self) -> Self; + + fn minimal_poly(mut self) -> Vec { + let mut m = vec![Self::one()]; + for _ in 0..Self::D { + m = naive_poly_mul(&m, &[-self, Self::one()]); + self = self.frobenius(); + } + let mut m_iter = m.into_iter().map(|c| c.as_base().expect("Extension is not algebraic?")); + let m: Vec = m_iter.by_ref().take(Self::D + 1).collect(); + debug_assert_eq!(m.len(), Self::D + 1); + debug_assert_eq!(m.last(), Some(&F::one())); + debug_assert!(m_iter.all(|c| c.is_zero())); + m + } + + fn galois_group(self) -> Vec { + iter::successors(Some(self), |x| Some(x.frobenius())).take(Self::D).collect() + } +} + +/// Optional trait for implementing Two Adic Binomial Extension Field. +pub trait HasTwoAdicBionmialExtension: BinomiallyExtendable { + const EXT_TWO_ADICITY: usize; + + fn ext_two_adic_generator(bits: usize) -> [Self; D]; +} diff --git a/field/src/field.rs b/field/src/field.rs new file mode 100644 index 00000000..d755b759 --- /dev/null +++ b/field/src/field.rs @@ -0,0 +1,390 @@ +use alloc::vec; +use core::{ + fmt::{Debug, Display}, + hash::Hash, + iter::{Product, Sum}, + ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign}, + slice, +}; + +use itertools::Itertools; +use num_bigint::BigUint; +use serde::{de::DeserializeOwned, Serialize}; + +use crate::{ + exponentiation::exp_u64_by_squaring, + packed::{PackedField, PackedValue}, + Packable, +}; + +/// A generalization of `Field` which permits things like +/// - an actual field element +/// - a symbolic expression which would evaluate to a field element +/// - a vector of field elements +pub trait AbstractField: + Sized + + Default + + Clone + + Add + + AddAssign + + Sub + + SubAssign + + Neg + + Mul + + MulAssign + + Sum + + Product + + Debug { + type F: Field; + + fn zero() -> Self; + fn one() -> Self; + fn two() -> Self; + fn neg_one() -> Self; + + fn from_f(f: Self::F) -> Self; + fn from_bool(b: bool) -> Self; + fn from_canonical_u8(n: u8) -> Self; + fn from_canonical_u16(n: u16) -> Self; + fn from_canonical_u32(n: u32) -> Self; + fn from_canonical_u64(n: u64) -> Self; + fn from_canonical_usize(n: usize) -> Self; + + fn from_wrapped_u32(n: u32) -> Self; + fn from_wrapped_u64(n: u64) -> Self; + + /// A generator of this field's entire multiplicative group. + fn generator() -> Self; + + #[must_use] + fn double(&self) -> Self { self.clone() + self.clone() } + + #[must_use] + fn square(&self) -> Self { self.clone() * self.clone() } + + #[must_use] + fn cube(&self) -> Self { self.square() * self.clone() } + + /// Exponentiation by a `u64` power. + /// + /// The default implementation calls `exp_u64_generic`, which by default performs exponentiation + /// by squaring. Rather than override this method, it is generally recommended to have the + /// concrete field type override `exp_u64_generic`, so that any optimizations will apply to all + /// abstract fields. + #[must_use] + #[inline] + fn exp_u64(&self, power: u64) -> Self { Self::F::exp_u64_generic(self.clone(), power) } + + #[must_use] + #[inline(always)] + fn exp_const_u64(&self) -> Self { + match POWER { + 0 => Self::one(), + 1 => self.clone(), + 2 => self.square(), + 3 => self.cube(), + 4 => self.square().square(), + 5 => self.square().square() * self.clone(), + 6 => self.square().cube(), + 7 => { + let x2 = self.square(); + let x3 = x2.clone() * self.clone(); + let x4 = x2.square(); + x3 * x4 + }, + _ => self.exp_u64(POWER), + } + } + + #[must_use] + fn exp_power_of_2(&self, power_log: usize) -> Self { + let mut res = self.clone(); + for _ in 0..power_log { + res = res.square(); + } + res + } + + #[must_use] + fn powers(&self) -> Powers { self.shifted_powers(Self::one()) } + + fn shifted_powers(&self, start: Self) -> Powers { + Powers { base: self.clone(), current: start } + } + + fn powers_packed>(&self) -> PackedPowers { + self.shifted_powers_packed(Self::one()) + } + + fn shifted_powers_packed>( + &self, + start: Self, + ) -> PackedPowers { + let mut current = P::from_f(start); + let slice = current.as_slice_mut(); + for i in 1..P::WIDTH { + slice[i] = slice[i - 1].clone() * self.clone(); + } + + PackedPowers { multiplier: P::from_f(self.clone()).exp_u64(P::WIDTH as u64), current } + } + + fn dot_product(u: &[Self; N], v: &[Self; N]) -> Self { + u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum() + } + + fn try_div(self, rhs: Rhs) -> Option<>::Output> + where + Rhs: Field, + Self: Mul, { + rhs.try_inverse().map(|inv| self * inv) + } +} + +/// An element of a finite field. +pub trait Field: + AbstractField + + Packable + + 'static + + Copy + + Div + + Eq + + Hash + + Send + + Sync + + Display + + Serialize + + DeserializeOwned { + type Packing: PackedField; + + fn is_zero(&self) -> bool { *self == Self::zero() } + + fn is_one(&self) -> bool { *self == Self::one() } + + /// self * 2^exp + #[must_use] + #[inline] + fn mul_2exp_u64(&self, exp: u64) -> Self { *self * Self::two().exp_u64(exp) } + + /// self / 2^exp + #[must_use] + #[inline] + fn div_2exp_u64(&self, exp: u64) -> Self { *self / Self::two().exp_u64(exp) } + + /// Exponentiation by a `u64` power. This is similar to `exp_u64`, but more general in that it + /// can be used with `AbstractField`s, not just this concrete field. + /// + /// The default implementation uses naive square and multiply. Implementations may want to + /// override this and handle certain powers with more optimal addition chains. + #[must_use] + #[inline] + fn exp_u64_generic>(val: AF, power: u64) -> AF { + exp_u64_by_squaring(val, power) + } + + /// The multiplicative inverse of this field element, if it exists. + /// + /// NOTE: The inverse of `0` is undefined and will return `None`. + #[must_use] + fn try_inverse(&self) -> Option; + + #[must_use] + fn inverse(&self) -> Self { self.try_inverse().expect("Tried to invert zero") } + + /// Computes input/2. + /// Should be overwritten by most field implementations to use bitshifts. + /// Will error if the field characteristic is 2. + #[must_use] + fn halve(&self) -> Self { + let half = + Self::two().try_inverse().expect("Cannot divide by 2 in fields with characteristic 2"); + *self * half + } + + fn order() -> BigUint; + + #[inline] + fn bits() -> usize { Self::order().bits() as usize } +} + +pub trait PrimeField: Field + Ord { + fn as_canonical_biguint(&self) -> BigUint; +} + +/// A prime field of order less than `2^64`. +pub trait PrimeField64: PrimeField { + const ORDER_U64: u64; + + /// Return the representative of `value` that is less than `ORDER_U64`. + fn as_canonical_u64(&self) -> u64; +} + +/// A prime field of order less than `2^32`. +pub trait PrimeField32: PrimeField64 { + const ORDER_U32: u32; + + /// Return the representative of `value` that is less than `ORDER_U32`. + fn as_canonical_u32(&self) -> u32; +} + +pub trait AbstractExtensionField: + AbstractField + + From + + Add + + AddAssign + + Sub + + SubAssign + + Mul + + MulAssign { + const D: usize; + + fn from_base(b: Base) -> Self; + + /// Suppose this field extension is represented by the quotient + /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible + /// polynomial of degree `D`. This function takes a slice `bs` of + /// length at most D, and constructs the field element + /// \sum_i bs[i] * X^i. + /// + /// NB: The value produced by this function fundamentally depends + /// on the choice of irreducible polynomial f. Care must be taken + /// to ensure portability if these values might ever be passed to + /// (or rederived within) another compilation environment where a + /// different f might have been used. + fn from_base_slice(bs: &[Base]) -> Self; + + /// Similar to `core:array::from_fn`, with the same caveats as + /// `from_base_slice`. + fn from_base_fn Base>(f: F) -> Self; + + /// Suppose this field extension is represented by the quotient + /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible + /// polynomial of degree `D`. This function takes a field element + /// \sum_i bs[i] * X^i and returns the coefficients as a slice + /// `bs` of length at most D containing, from lowest degree to + /// highest. + /// + /// NB: The value produced by this function fundamentally depends + /// on the choice of irreducible polynomial f. Care must be taken + /// to ensure portability if these values might ever be passed to + /// (or rederived within) another compilation environment where a + /// different f might have been used. + fn as_base_slice(&self) -> &[Base]; + + /// Suppose this field extension is represented by the quotient + /// ring B[X]/(f(X)) where B is `Base` and f is an irreducible + /// polynomial of degree `D`. This function returns the field + /// element `X^exponent` if `exponent < D` and panics otherwise. + /// (The fact that f is not known at the point that this function + /// is defined prevents implementing exponentiation of higher + /// powers since the reduction cannot be performed.) + /// + /// NB: The value produced by this function fundamentally depends + /// on the choice of irreducible polynomial f. Care must be taken + /// to ensure portability if these values might ever be passed to + /// (or rederived within) another compilation environment where a + /// different f might have been used. + fn monomial(exponent: usize) -> Self { + assert!(exponent < Self::D, "requested monomial of too high degree"); + let mut vec = vec![Base::zero(); Self::D]; + vec[exponent] = Base::one(); + Self::from_base_slice(&vec) + } +} + +pub trait ExtensionField: Field + AbstractExtensionField { + type ExtensionPacking: AbstractExtensionField + + 'static + + Copy + + Send + + Sync; + + fn is_in_basefield(&self) -> bool { self.as_base_slice()[1..].iter().all(Field::is_zero) } + fn as_base(&self) -> Option { + if self.is_in_basefield() { + Some(self.as_base_slice()[0]) + } else { + None + } + } + + fn ext_powers_packed(&self) -> impl Iterator { + let powers = self.powers().take(Base::Packing::WIDTH + 1).collect_vec(); + // Transpose first WIDTH powers + let current = Self::ExtensionPacking::from_base_fn(|i| { + Base::Packing::from_fn(|j| powers[j].as_base_slice()[i]) + }); + // Broadcast self^WIDTH + let multiplier = Self::ExtensionPacking::from_base_fn(|i| { + Base::Packing::from(powers[Base::Packing::WIDTH].as_base_slice()[i]) + }); + + core::iter::successors(Some(current), move |¤t| Some(current * multiplier)) + } +} + +impl ExtensionField for F { + type ExtensionPacking = F::Packing; +} + +impl AbstractExtensionField for AF { + const D: usize = 1; + + fn from_base(b: AF) -> Self { b } + + fn from_base_slice(bs: &[AF]) -> Self { + assert_eq!(bs.len(), 1); + bs[0].clone() + } + + fn from_base_fn AF>(mut f: F) -> Self { f(0) } + + fn as_base_slice(&self) -> &[AF] { slice::from_ref(self) } +} + +/// A field which supplies information like the two-adicity of its multiplicative group, and methods +/// for obtaining two-adic generators. +pub trait TwoAdicField: Field { + /// The number of factors of two in this field's multiplicative group. + const TWO_ADICITY: usize; + + /// Returns a generator of the multiplicative group of order `2^bits`. + /// Assumes `bits < TWO_ADICITY`, otherwise the result is undefined. + #[must_use] + fn two_adic_generator(bits: usize) -> Self; +} + +/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`. +#[derive(Clone, Debug)] +pub struct Powers { + pub base: F, + pub current: F, +} + +impl Iterator for Powers { + type Item = AF; + + fn next(&mut self) -> Option { + let result = self.current.clone(); + self.current *= self.base.clone(); + Some(result) + } +} + +/// like `Powers`, but packed into `PackedField` elements +#[derive(Clone, Debug)] +pub struct PackedPowers> { + // base ** P::WIDTH + pub multiplier: P, + pub current: P, +} + +impl> Iterator for PackedPowers { + type Item = P; + + fn next(&mut self) -> Option

{ + let result = self.current; + self.current *= self.multiplier; + Some(result) + } +} diff --git a/field/src/helpers.rs b/field/src/helpers.rs new file mode 100644 index 00000000..f4591be8 --- /dev/null +++ b/field/src/helpers.rs @@ -0,0 +1,167 @@ +use alloc::{vec, vec::Vec}; +use core::{array, iter::Sum, ops::Mul}; + +use num_bigint::BigUint; + +use crate::{field::Field, AbstractField, PrimeField, PrimeField32, TwoAdicField}; + +/// Computes `Z_H(x)`, where `Z_H` is the zerofier of a multiplicative subgroup of order `2^log_n`. +pub fn two_adic_subgroup_zerofier(log_n: usize, x: F) -> F { + x.exp_power_of_2(log_n) - F::one() +} + +/// Computes `Z_{sH}(x)`, where `Z_{sH}` is the zerofier of the given coset of a multiplicative +/// subgroup of order `2^log_n`. +pub fn two_adic_coset_zerofier(log_n: usize, shift: F, x: F) -> F { + x.exp_power_of_2(log_n) - shift.exp_power_of_2(log_n) +} + +/// Computes a multiplicative subgroup whose order is known in advance. +pub fn cyclic_subgroup_known_order( + generator: F, + order: usize, +) -> impl Iterator + Clone { + generator.powers().take(order) +} + +/// Computes a coset of a multiplicative subgroup whose order is known in advance. +pub fn cyclic_subgroup_coset_known_order( + generator: F, + shift: F, + order: usize, +) -> impl Iterator + Clone { + cyclic_subgroup_known_order(generator, order).map(move |x| x * shift) +} + +#[must_use] +pub fn add_vecs(v: Vec, w: Vec) -> Vec { + assert_eq!(v.len(), w.len()); + v.into_iter().zip(w).map(|(x, y)| x + y).collect() +} + +pub fn sum_vecs>>(iter: I) -> Vec { + iter.reduce(|v, w| add_vecs(v, w)).expect("sum_vecs: empty iterator") +} + +pub fn scale_vec(s: F, vec: Vec) -> Vec { vec.into_iter().map(|x| s * x).collect() } + +/// `x += y * s`, where `s` is a scalar. +pub fn add_scaled_slice_in_place(x: &mut [F], y: Y, s: F) +where + F: Field, + Y: Iterator, { + // TODO: Use PackedField + x.iter_mut().zip(y).for_each(|(x_i, y_i)| *x_i += y_i * s); +} + +/// Extend a field `AF` element `x` to an array of length `D` +/// by filling zeros. +pub fn field_to_array(x: AF) -> [AF; D] { + let mut arr = array::from_fn(|_| AF::zero()); + arr[0] = x; + arr +} + +/// Naive polynomial multiplication. +pub fn naive_poly_mul(a: &[AF], b: &[AF]) -> Vec { + // Grade school algorithm + let mut product = vec![AF::zero(); a.len() + b.len() - 1]; + for (i, c1) in a.iter().enumerate() { + for (j, c2) in b.iter().enumerate() { + product[i + j] += c1.clone() * c2.clone(); + } + } + product +} + +/// Expand a product of binomials (x - roots[0])(x - roots[1]).. into polynomial coefficients. +pub fn binomial_expand(roots: &[AF]) -> Vec { + let mut coeffs = vec![AF::zero(); roots.len() + 1]; + coeffs[0] = AF::one(); + for (i, x) in roots.iter().enumerate() { + for j in (1..i + 2).rev() { + coeffs[j] = coeffs[j - 1].clone() - x.clone() * coeffs[j].clone(); + } + coeffs[0] *= -x.clone(); + } + coeffs +} + +pub fn eval_poly(poly: &[AF], x: AF) -> AF { + let mut acc = AF::zero(); + for coeff in poly.iter().rev() { + acc *= x.clone(); + acc += coeff.clone(); + } + acc +} + +/// Given an element x from a 32 bit field F_P compute x/2. +#[inline] +pub fn halve_u32(input: u32) -> u32 { + let shift = (P + 1) >> 1; + let shr = input >> 1; + let lo_bit = input & 1; + let shr_corr = shr + shift; + if lo_bit == 0 { + shr + } else { + shr_corr + } +} + +/// Given an element x from a 64 bit field F_P compute x/2. +#[inline] +pub fn halve_u64(input: u64) -> u64 { + let shift = (P + 1) >> 1; + let shr = input >> 1; + let lo_bit = input & 1; + let shr_corr = shr + shift; + if lo_bit == 0 { + shr + } else { + shr_corr + } +} + +/// Given a slice of SF elements, reduce them to a TF element using a 2^32-base decomposition. +pub fn reduce_32(vals: &[SF]) -> TF { + let po2 = TF::from_canonical_u64(1u64 << 32); + let mut result = TF::zero(); + for val in vals.iter().rev() { + result = result * po2 + TF::from_canonical_u32(val.as_canonical_u32()); + } + result +} + +/// Given an SF element, split it to a vector of TF elements using a 2^64-base decomposition. +/// +/// We use a 2^64-base decomposition for a field of size ~2^32 because then the bias will be +/// at most ~1/2^32 for each element after the reduction. +pub fn split_32(val: SF, n: usize) -> Vec { + let po2 = BigUint::from(1u128 << 64); + let mut val = val.as_canonical_biguint(); + let mut result = Vec::new(); + for _ in 0..n { + let mask: BigUint = po2.clone() - BigUint::from(1u128); + let digit: BigUint = val.clone() & mask; + let digit_u64s = digit.to_u64_digits(); + if !digit_u64s.is_empty() { + result.push(TF::from_wrapped_u64(digit_u64s[0])); + } else { + result.push(TF::zero()) + } + val /= po2.clone(); + } + result +} + +/// Maximally generic dot product. +pub fn dot_product(li: LI, ri: RI) -> S +where + LI: Iterator, + RI: Iterator, + LI::Item: Mul, + S: Sum<>::Output>, { + li.zip(ri).map(|(l, r)| l * r).sum() +} diff --git a/field/src/lib.rs b/field/src/lib.rs new file mode 100644 index 00000000..8f483393 --- /dev/null +++ b/field/src/lib.rs @@ -0,0 +1,20 @@ +//! A framework for finite fields. + +#![no_std] + +extern crate alloc; + +mod array; +mod batch_inverse; +mod exponentiation; +pub mod extension; +mod field; +mod helpers; +mod packed; + +pub use array::*; +pub use batch_inverse::*; +pub use exponentiation::*; +pub use field::*; +pub use helpers::*; +pub use packed::*; diff --git a/field/src/packed.rs b/field/src/packed.rs new file mode 100644 index 00000000..0ce8551e --- /dev/null +++ b/field/src/packed.rs @@ -0,0 +1,173 @@ +use core::{ + mem, + ops::{Add, AddAssign, Div, Mul, MulAssign, Sub, SubAssign}, + slice, +}; + +use crate::{field::Field, AbstractField}; + +/// A trait to constrain types that can be packed into a packed value. +/// +/// The `Packable` trait allows us to specify implementations for potentially conflicting types. +pub trait Packable: 'static + Default + Copy + Send + Sync + PartialEq + Eq {} + +/// # Safety +/// - `WIDTH` is assumed to be a power of 2. +/// - If `P` implements `PackedField` then `P` must be castable to/from `[P::Value; P::WIDTH]` +/// without UB. +pub unsafe trait PackedValue: 'static + Copy + From + Send + Sync { + type Value: Packable; + + const WIDTH: usize; + + fn from_slice(slice: &[Self::Value]) -> &Self; + fn from_slice_mut(slice: &mut [Self::Value]) -> &mut Self; + + /// Similar to `core:array::from_fn`. + fn from_fn(f: F) -> Self + where F: FnMut(usize) -> Self::Value; + + fn as_slice(&self) -> &[Self::Value]; + fn as_slice_mut(&mut self) -> &mut [Self::Value]; + + fn pack_slice(buf: &[Self::Value]) -> &[Self] { + // Sources vary, but this should be true on all platforms we care about. + // This should be a const assert, but trait methods can't access `Self` in a const context, + // even with inner struct instantiation. So we will trust LLVM to optimize this out. + assert!(mem::align_of::() <= mem::align_of::()); + assert!( + buf.len() % Self::WIDTH == 0, + "Slice length (got {}) must be a multiple of packed field width ({}).", + buf.len(), + Self::WIDTH + ); + let buf_ptr = buf.as_ptr().cast::(); + let n = buf.len() / Self::WIDTH; + unsafe { slice::from_raw_parts(buf_ptr, n) } + } + + fn pack_slice_with_suffix(buf: &[Self::Value]) -> (&[Self], &[Self::Value]) { + let (packed, suffix) = buf.split_at(buf.len() - buf.len() % Self::WIDTH); + (Self::pack_slice(packed), suffix) + } + + fn pack_slice_mut(buf: &mut [Self::Value]) -> &mut [Self] { + assert!(mem::align_of::() <= mem::align_of::()); + assert!( + buf.len() % Self::WIDTH == 0, + "Slice length (got {}) must be a multiple of packed field width ({}).", + buf.len(), + Self::WIDTH + ); + let buf_ptr = buf.as_mut_ptr().cast::(); + let n = buf.len() / Self::WIDTH; + unsafe { slice::from_raw_parts_mut(buf_ptr, n) } + } + + fn pack_slice_with_suffix_mut(buf: &mut [Self::Value]) -> (&mut [Self], &mut [Self::Value]) { + let (packed, suffix) = buf.split_at_mut(buf.len() - buf.len() % Self::WIDTH); + (Self::pack_slice_mut(packed), suffix) + } + + fn unpack_slice(buf: &[Self]) -> &[Self::Value] { + assert!(mem::align_of::() >= mem::align_of::()); + let buf_ptr = buf.as_ptr().cast::(); + let n = buf.len() * Self::WIDTH; + unsafe { slice::from_raw_parts(buf_ptr, n) } + } +} + +/// # Safety +/// - See `PackedValue` above. +pub unsafe trait PackedField: AbstractField + + PackedValue + + From + + Add + + AddAssign + + Sub + + SubAssign + + Mul + + MulAssign + // TODO: Implement packed / packed division + + Div +{ + type Scalar: Field + Add + Mul + Sub; + + + + /// Take interpret two vectors as chunks of `block_len` elements. Unpack and interleave those + /// chunks. This is best seen with an example. If we have: + /// ```text + /// A = [x0, y0, x1, y1] + /// B = [x2, y2, x3, y3] + /// ``` + /// + /// then + /// + /// ```text + /// interleave(A, B, 1) = ([x0, x2, x1, x3], [y0, y2, y1, y3]) + /// ``` + /// + /// Pairs that were adjacent in the input are at corresponding positions in the output. + /// + /// `r` lets us set the size of chunks we're interleaving. If we set `block_len = 2`, then for + /// + /// ```text + /// A = [x0, x1, y0, y1] + /// B = [x2, x3, y2, y3] + /// ``` + /// + /// we obtain + /// + /// ```text + /// interleave(A, B, block_len) = ([x0, x1, x2, x3], [y0, y1, y2, y3]) + /// ``` + /// + /// We can also think about this as stacking the vectors, dividing them into 2x2 matrices, and + /// transposing those matrices. + /// + /// When `block_len = WIDTH`, this operation is a no-op. `block_len` must divide `WIDTH`. Since + /// `WIDTH` is specified to be a power of 2, `block_len` must also be a power of 2. It cannot be + /// 0 and it cannot exceed `WIDTH`. + fn interleave(&self, other: Self, block_len: usize) -> (Self, Self); +} + +unsafe impl PackedValue for T { + type Value = Self; + + const WIDTH: usize = 1; + + fn from_slice(slice: &[Self::Value]) -> &Self { &slice[0] } + + fn from_slice_mut(slice: &mut [Self::Value]) -> &mut Self { &mut slice[0] } + + fn from_fn(mut f: Fn) -> Self + where Fn: FnMut(usize) -> Self::Value { + f(0) + } + + fn as_slice(&self) -> &[Self::Value] { slice::from_ref(self) } + + fn as_slice_mut(&mut self) -> &mut [Self::Value] { slice::from_mut(self) } +} + +unsafe impl PackedField for F { + type Scalar = Self; + + fn interleave(&self, other: Self, block_len: usize) -> (Self, Self) { + match block_len { + 1 => (*self, other), + _ => panic!("unsupported block length"), + } + } +} + +impl Packable for u8 {} + +impl Packable for u16 {} + +impl Packable for u32 {} + +impl Packable for u64 {} + +impl Packable for u128 {} diff --git a/APACHE2 b/ronkathon/APACHE2 similarity index 100% rename from APACHE2 rename to ronkathon/APACHE2 diff --git a/ronkathon/Cargo.toml b/ronkathon/Cargo.toml new file mode 100644 index 00000000..6443ab10 --- /dev/null +++ b/ronkathon/Cargo.toml @@ -0,0 +1,12 @@ +[package] +authors =["Pluto Authors"] +description="""ronkathon""" +edition ="2021" +license ="Apache2.0 OR MIT" +name ="ronkathon" +repository ="https://github.com/thor314/ronkathon" +version ="0.1.0" + +[dependencies] +anyhow ="1.0" +p3-field = { path = "../field" } diff --git a/LICENSE-MIT b/ronkathon/LICENSE-MIT similarity index 100% rename from LICENSE-MIT rename to ronkathon/LICENSE-MIT diff --git a/README.md b/ronkathon/README.md similarity index 100% rename from README.md rename to ronkathon/README.md diff --git a/rust-toolchain.toml b/ronkathon/rust-toolchain.toml similarity index 100% rename from rust-toolchain.toml rename to ronkathon/rust-toolchain.toml diff --git a/src/lib.rs b/ronkathon/src/lib.rs similarity index 100% rename from src/lib.rs rename to ronkathon/src/lib.rs diff --git a/util/Cargo.toml b/util/Cargo.toml new file mode 100644 index 00000000..21152b35 --- /dev/null +++ b/util/Cargo.toml @@ -0,0 +1,8 @@ +[package] +name = "p3-util" +version = "0.1.0" +edition = "2021" +license = "MIT OR Apache-2.0" + +[dependencies] +serde = { version = "1.0", default-features = false } diff --git a/util/src/array_serialization.rs b/util/src/array_serialization.rs new file mode 100644 index 00000000..4754dddf --- /dev/null +++ b/util/src/array_serialization.rs @@ -0,0 +1,53 @@ +use alloc::vec::Vec; +use core::marker::PhantomData; + +use serde::{ + de::{SeqAccess, Visitor}, + ser::SerializeTuple, + Deserialize, Deserializer, Serialize, Serializer, +}; + +pub fn serialize( + data: &[T; N], + ser: S, +) -> Result { + let mut s = ser.serialize_tuple(N)?; + for item in data { + s.serialize_element(item)?; + } + s.end() +} + +struct ArrayVisitor(PhantomData); + +impl<'de, T, const N: usize> Visitor<'de> for ArrayVisitor +where T: Deserialize<'de> +{ + type Value = [T; N]; + + fn expecting(&self, formatter: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { + formatter.write_fmt(format_args!("an array of length {}", N)) + } + + #[inline] + fn visit_seq(self, mut seq: A) -> Result + where A: SeqAccess<'de> { + let mut data = Vec::with_capacity(N); + for _ in 0..N { + match seq.next_element()? { + Some(val) => data.push(val), + None => return Err(serde::de::Error::invalid_length(N, &self)), + } + } + match data.try_into() { + Ok(arr) => Ok(arr), + Err(_) => unreachable!(), + } + } +} +pub fn deserialize<'de, D, T, const N: usize>(deserializer: D) -> Result<[T; N], D::Error> +where + D: Deserializer<'de>, + T: Deserialize<'de>, { + deserializer.deserialize_tuple(N, ArrayVisitor::(PhantomData)) +} diff --git a/util/src/lib.rs b/util/src/lib.rs new file mode 100644 index 00000000..359a4070 --- /dev/null +++ b/util/src/lib.rs @@ -0,0 +1,145 @@ +//! Various simple utilities. + +#![no_std] + +extern crate alloc; + +use alloc::vec::Vec; +use core::hint::unreachable_unchecked; + +pub mod array_serialization; +pub mod linear_map; + +/// Computes `ceil(a / b)`. Assumes `a + b` does not overflow. +#[must_use] +pub const fn ceil_div_usize(a: usize, b: usize) -> usize { (a + b - 1) / b } + +/// Computes `ceil(log_2(n))`. +#[must_use] +pub const fn log2_ceil_usize(n: usize) -> usize { + (usize::BITS - n.saturating_sub(1).leading_zeros()) as usize +} + +#[must_use] +pub fn log2_ceil_u64(n: u64) -> u64 { (u64::BITS - n.saturating_sub(1).leading_zeros()).into() } + +/// Computes `log_2(n)` +/// +/// # Panics +/// Panics if `n` is not a power of two. +#[must_use] +#[inline] +pub fn log2_strict_usize(n: usize) -> usize { + let res = n.trailing_zeros(); + assert_eq!(n.wrapping_shr(res), 1, "Not a power of two: {n}"); + res as usize +} + +/// Returns `[0, ..., N - 1]`. +#[must_use] +pub const fn indices_arr() -> [usize; N] { + let mut indices_arr = [0; N]; + let mut i = 0; + while i < N { + indices_arr[i] = i; + i += 1; + } + indices_arr +} + +#[inline] +pub const fn reverse_bits(x: usize, n: usize) -> usize { + reverse_bits_len(x, n.trailing_zeros() as usize) +} + +#[inline] +pub const fn reverse_bits_len(x: usize, bit_len: usize) -> usize { + // NB: The only reason we need overflowing_shr() here as opposed + // to plain '>>' is to accommodate the case n == num_bits == 0, + // which would become `0 >> 64`. Rust thinks that any shift of 64 + // bits causes overflow, even when the argument is zero. + x.reverse_bits().overflowing_shr(usize::BITS - bit_len as u32).0 +} + +pub fn reverse_slice_index_bits(vals: &mut [F]) { + let n = vals.len(); + if n == 0 { + return; + } + let log_n = log2_strict_usize(n); + + for i in 0..n { + let j = reverse_bits_len(i, log_n); + if i < j { + vals.swap(i, j); + } + } +} + +#[inline(always)] +pub fn assume(p: bool) { + debug_assert!(p); + if !p { + unsafe { + unreachable_unchecked(); + } + } +} + +/// Try to force Rust to emit a branch. Example: +/// +/// ```no_run +/// let x = 100; +/// if x > 20 { +/// println!("x is big!"); +/// p3_util::branch_hint(); +/// } else { +/// println!("x is small!"); +/// } +/// ``` +/// +/// This function has no semantics. It is a hint only. +#[inline(always)] +pub fn branch_hint() { + // NOTE: These are the currently supported assembly architectures. See the + // [nightly reference](https://doc.rust-lang.org/nightly/reference/inline-assembly.html) for + // the most up-to-date list. + #[cfg(any( + target_arch = "aarch64", + target_arch = "arm", + target_arch = "riscv32", + target_arch = "riscv64", + target_arch = "x86", + target_arch = "x86_64", + ))] + unsafe { + core::arch::asm!("", options(nomem, nostack, preserves_flags)); + } +} + +/// Convenience methods for Vec. +pub trait VecExt { + /// Push `elem` and return a reference to it. + fn pushed_ref(&mut self, elem: T) -> &T; + /// Push `elem` and return a mutable reference to it. + fn pushed_mut(&mut self, elem: T) -> &mut T; +} + +impl VecExt for alloc::vec::Vec { + fn pushed_ref(&mut self, elem: T) -> &T { + self.push(elem); + self.last().unwrap() + } + + fn pushed_mut(&mut self, elem: T) -> &mut T { + self.push(elem); + self.last_mut().unwrap() + } +} + +pub fn transpose_vec(v: Vec>) -> Vec> { + assert!(!v.is_empty()); + let len = v[0].len(); + let mut iters: Vec<_> = v.into_iter().map(|n| n.into_iter()).collect(); + (0..len).map(|_| iters.iter_mut().map(|n| n.next().unwrap()).collect::>()).collect() +} diff --git a/util/src/linear_map.rs b/util/src/linear_map.rs new file mode 100644 index 00000000..6dc521d9 --- /dev/null +++ b/util/src/linear_map.rs @@ -0,0 +1,65 @@ +use alloc::vec::Vec; +use core::mem; + +use crate::VecExt; + +/// O(n) Vec-backed map for keys that only implement Eq. +/// Only use this for a very small number of keys, operations +/// on it can easily become O(n^2). +#[derive(Debug)] +pub struct LinearMap(Vec<(K, V)>); + +impl Default for LinearMap { + fn default() -> Self { Self(Default::default()) } +} + +impl LinearMap { + pub fn new() -> Self { Default::default() } + + pub fn get(&self, k: &K) -> Option<&V> { self.0.iter().find(|(kk, _)| kk == k).map(|(_, v)| v) } + + pub fn get_mut(&mut self, k: &K) -> Option<&mut V> { + self.0.iter_mut().find(|(kk, _)| kk == k).map(|(_, v)| v) + } + + /// This is O(n), because we check for an existing entry. + pub fn insert(&mut self, k: K, mut v: V) -> Option { + if let Some(vv) = self.get_mut(&k) { + mem::swap(&mut v, vv); + Some(v) + } else { + self.0.push((k, v)); + None + } + } + + pub fn get_or_insert_with(&mut self, k: K, f: impl FnOnce() -> V) -> &mut V { + let existing = self.0.iter().position(|(kk, _)| kk == &k); + if let Some(idx) = existing { + &mut self.0[idx].1 + } else { + let slot = self.0.pushed_mut((k, f())); + &mut slot.1 + } + } + + pub fn values(&self) -> impl Iterator { self.0.iter().map(|(_, v)| v) } +} + +impl FromIterator<(K, V)> for LinearMap { + /// This calls `insert` in a loop, so is O(n^2)!! + fn from_iter>(iter: T) -> Self { + let mut me = LinearMap::default(); + for (k, v) in iter { + me.insert(k, v); + } + me + } +} + +impl IntoIterator for LinearMap { + type IntoIter = as IntoIterator>::IntoIter; + type Item = (K, V); + + fn into_iter(self) -> Self::IntoIter { self.0.into_iter() } +}