-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexperiment_mc_mSTRCA.m
132 lines (118 loc) · 4.66 KB
/
experiment_mc_mSTRCA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
clc;clear;
nfold=10;
nchn=11;
nsap=768;
Fstart=0.5;
Fend=10;
accuracy_strca=zeros(1,10,nchn,2);
for ncomp=1:nchn
for sub=1:1
disp([num2str(ncomp), ' ', num2str(sub)])
train_ind=cell(7,1);test_ind=cell(7,1);dataf=cell(7,1);
for mn=0:6
% load shuffle index
load(['Dataset/RandomIndex/index_sub',num2str(sub),'_mn',num2str(mn),'.mat'])
train_ind{mn+1}=train_index;test_ind{mn+1}=test_index;
% prepare dataloader
dataf{mn+1}=zeros(nchn,nsap,size(train_index,2)+size(test_index,2));
clear train_index test_index
load(['Dataset/DataBank_Fourier/Motion',num2str(mn), ...
'/Subject',num2str(sub),'/Fstart_0.5_Fend_10.mat'], 'data');
dataf{mn+1}=permute(data, [2, 1, 3]);
end
% for each fold
for n=1:nfold
% split training set and testing set
train_dataf=cell(7,1);test_dataf=cell(7,1);
for mn=0:6
train_dataf{mn+1}=dataf{mn+1}(:,:,train_ind{mn+1}(n,:));
test_dataf{mn+1} =dataf{mn+1}(:,:,test_ind{mn+1}(n,:));
end
% spatial filter task-related component analysis
S=zeros(nchn,nchn);Q=zeros(nchn,nchn);
for mn=0:6
[s,q]=sptrca_SQ(squeeze(train_dataf{mn+1}));
S=S+s;Q=Q+q;
end
S=S/7;Q=Q/7;
[V,D] = eig(S, Q, 'qz');
[~,index]=sort(diag(D),'descend');
w=V(:,index(1:ncomp));
W=w.*reshape(sign(w(5,:)),1,ncomp);
% templates for canonical correlation pattern
mX=zeros(nsap,size(W,2),7);
for mn=0:6
mX(:,:,mn+1)=squeeze(mean(train_dataf{mn+1}, 3))'*squeeze(W);
end
% feature extraction of canonical correlation pattern
train_dataff=[];test_dataff=[];train_label=[];test_label=[];
for mn=0:6
train_dataff=cat(3,train_dataff,train_dataf{mn+1});
test_dataff =cat(3,test_dataff, test_dataf{mn+1});
train_label=cat(1,train_label,mn*ones(size(train_dataf{mn+1},3),1));
test_label=cat(1,test_label,mn*ones(size(test_dataf{mn+1},3),1));
end
train_data=Pattern_CCP(squeeze(train_dataff), mX,W);
test_data =Pattern_CCP(squeeze(test_dataff) , mX,W);
x_train = reshape(train_data, [], 21);
x_test = reshape(test_data, [], 21);
model=fitcecoc(x_train,train_label,'Learner','discriminant');
pred_label=predict(model, x_test);
accuracy_strca(sub,n, ncomp, 1)=mean(pred_label(:)==test_label(:));
model=fitcecoc(x_train,train_label,'Learner','svm');
pred_label=predict(model, x_test);
accuracy_strca(sub,n, ncomp, 2)=mean(pred_label(:)==test_label(:));
end
end
end
save accuracy_strca.mat accuracy_strca
function [S,Q] = sptrca_SQ(eeg)
[num_chans, num_smpls, num_trials] = size(eeg);
% Q
UX = reshape(eeg, num_chans, num_smpls*num_trials);
UX = bsxfun(@minus, UX, mean(UX,2));
Q = UX*UX'/(num_smpls*num_trials);
% S
eeg=eeg-mean(eeg,2);
U = squeeze(sum(eeg,3));
V=zeros(num_chans,num_chans);
for k=1:num_trials
V = V + squeeze(eeg(:,:,k))*squeeze(eeg(:,:,k))';
end
S=(U*U'-V)/(num_smpls*num_trials*(num_trials-1));
end
function ru=Pattern_CCP(X, mX, W)
%X: channel*sample*trial
%mX: channel*sample*N_class
%W: channel*n_fea
%tmp_mX:sample*channel*N_class
%tmp_X: sample*channel*trial
[n_spl,~, n_cls]=size(mX);
[n_chn, ~]=size(W);
n_trl=size(X, 3);
tmp_mX=mX-mean(mX,3);
ru=zeros(n_trl, n_cls, 3);
X=reshape(reshape(X,n_chn,[])'*W, [n_spl,n_trl,size(W,2)]);
for nt=1:n_trl
x=squeeze(X(:,nt,:))-mean(mX,3);
for nc=1:n_cls
ru(nt,nc, 1)=corr2(x, tmp_mX(:, :, nc));
% disp(size(x))
% disp(size(tmp_mX(:, :, nc)))
[~, B]=canoncorr(x, tmp_mX(:, :, nc));
ru(nt,nc, 2)=corr2(x*B, tmp_mX(:, :, nc)*B);
tmpx1=x-tmp_mX(:, :, nc);
tmpx2=squeeze(mean(tmp_mX(:,:,setdiff(1:n_cls, nc)), 3))-tmp_mX(:, :, nc);
[A, ~]=canoncorr(tmpx1, tmpx2);
ru(nt,nc, 3)=corr2(tmpx1*A, tmpx2*A);
end
end
end
function r=corr2_r1(a, b)
a = a - mean2(a);
b = b - mean2(b);
r = sum(sum(a.*b))/sqrt(sum(sum(a.*a))*sum(sum(b.*b)));
end
function r=corr2_r2(a, b)
r = sum(sum(a.*b))/sqrt(sum(sum(a.*a))*sum(sum(b.*b)));
end