-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathc2HTC.py
executable file
·1508 lines (1449 loc) · 77.6 KB
/
c2HTC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import colormaps
from matplotlib.ticker import MaxNLocator
from scipy.signal import butter, filtfilt, lfilter, freqz, argrelextrema
from scipy.optimize import curve_fit
import seaborn as sns
import logging, pickle, os, sys
from opt_einsum import contract
from gmanp import pBasis, Pauli, Boson
from time import time, perf_counter, process_time, sleep
from datetime import datetime, timedelta
from pprint import pprint, pformat
from copy import copy
from scipy.integrate import solve_ivp, quad_vec, RK45
SOLVER = RK45 # Best!
#from scipy.integrate import RK23, DOP853, Radau, BDF, LSODA # Alternative solvers (testing)
from scipy import constants
import itertools
from scipy.fft import fft, fft2, ifft, ifft2, fftshift, ifftshift # recommended over numpy.fft
try:
import pretty_traceback
pretty_traceback.install()
except ModuleNotFoundError:
# colored traceback not supported
pass
logger = logging.getLogger(__name__)
sns.set_theme(context='notebook', # paper notebook talk poster (mainly scales font and linewidth)
style='ticks', # default 'darkgrid', 'tick' definitely best
palette='colorblind6', # 'colorblind' if need more than 6 lines
rc={'legend.fancybox':False,
'text.usetex':True,
'text.latex.preamble':r'\usepackage{amsmath}',
'figure.dpi':400.0,
'legend.edgecolor':'0.0', # '0.0' for opaque, '1.0' for transparent
'legend.borderpad':'0.2',
'legend.fontsize':'9',
}
)
class HTC:
COLORS = plt.rcParams['axes.prop_cycle'].by_key()['color']
EV_TO_FS = (constants.hbar/constants.e)*1e15 # convert time in electronvolts to time in fs
DEFAULT_DIRS = {'data':'./data', 'figures':'./figures'} # output directories
# N.B. type of parameters used to parse (non-default) input parameters
DEFAULT_PARAMS = {
'Q0': 15, # how many modes either side of K0 (or 0 for populations) to include; 2*Q0+1 modes total
'Nm': 6001, # Number of molecules
'Nnu':1, # Number of vibrational levels for each molecules
'L': 60.0, # Crystal propagation length, inverse micro meters
'nr':1.0, # refractive index, sets effective speed of light c/nr
'omega_c':1.94, # omega_0 = 1.94eV (Fig S4C)
'epsilon':2.14, # exciton energy, detuning omega_0-epsilon (0.2eV for model I in Xu et al. 2023)
'gSqrtN':0.15, # light-matter coupling
'kappa_c':3e-3, # photon loss
'Gam_z':0.0, # molecular pure dephasing
'Gam_up':0.0, # molecular pumping
'Gam_down':1e-7, # molecular loss
'S':0.0, # Huang-Rhys parameter
'omega_nu':0.00647, # vibrational energy spacing
'T':0.026, # k_B T in eV (.0259=300K, .026=302K)
'gam_nu':0.01, # vibrational damping rate
'initial_state': 'incoherent', # or photonic
'pex':0.01, # mean initial molecular population (for initial_state 'incoherent')
'sigma_0':0.1, # s.d. of initial incoherent population as fraction of L
'sigma_f':0, # s.d. in microns instead (if specified)
'atol':1e-9, # solver tolerance
'rtol':1e-6, # solver tolerance
'dt': 0.5, # determines interval at which solution is evaluated. Does not effect the accuracy of solution, only the grid at which observables are recorded
'rescale':1, # see self.rescale_int. N.B. not all parts of code use this function, and coefficients must be adjusted according to scaling in self.make_coeffs
'lowpass': 0.01, # used for smoothing oscillations in observable plots
'calculate_lp': False, # compute LP population for each state - adds overhead due to for-loops
}
@classmethod
def default_params(self):
return copy(self.DEFAULT_PARAMS)
def __init__(self, params=None):
for name, dp in self.DEFAULT_DIRS.items():
if not os.path.exists(dp):
os.makedirs(dp)
self.params = self.parse_params(params)
self.gp = pBasis(self.params['Nnu'], verbose=False, tests=False)
self.add_useful_params(self.params) # requires self.gp. Otherwise must be run before all other functions
self.boson = Boson(self.Nnu)
self.rates = self.get_rates(self.params)
self.Ks, self.ks = self.get_modes()
self.make_state_dic()
self.ns = np.arange(self.Nk)
self.rs = self.ns * self.params['delta_r']
self.wrapit(self.make_coeffs, f'Constructing EoM coefficients...', timeit=False)
self.wrapit(self.create_initial_state, f'Creating initial state...', timeit=False)
self.labels = self.get_labels()
def parse_params(self, params):
if params is None:
return self.default_params()
default_params = self.default_params()
parsed_params = {}
used_defaults = {}
unused = {}
for name, val in default_params.items():
if name not in params:
used_defaults[name] = val
parsed_params[name] = val
continue
try:
parsed_params[name] = type(val)(params[name])
except TypeError or ValueError:
logger.warning(f'Param {name} should be {type(val)}, using default {val}')
used_defaults[name] = val
unused[name] = params[name]
parsed_params[name] = val
for name, val in params.items():
if name not in default_params:
unused[name] = val
if len(used_defaults) > 0:
logger.info('The following parameters were not specified hence assigned default values:')
logger.info(pformat(used_defaults, sort_dicts=False))
if len(unused) > 0:
logger.warning('The following parameters were not recognised and have not been used:')
logger.warning(pformat(unused, sort_dicts=False))
return parsed_params
def add_useful_params(self, params):
params['nb'] = self.nb(params['T'])
self.Q0, self.N0, self.N1 = params['Q0'], self.gp.indices_nums[0], self.gp.indices_nums[1]
self.L = self.params['L'] * 1e-6 # system length in m
self.c = constants.c / self.params['nr'] # speed of light in material
self.wc = self.params['omega_c']
# Compute prefactor for K in cavity dispersion
# with this definition K_factor K^2 equiv (1/e) * (hbar^2 k^2 c^2) / (2*m*c^2) has units eV
self.K_to_eV = (constants.h * self.c) / (constants.e * self.L) # factor 1/e for Joules to eV
self.K_factor = self.K_to_eV / self.wc
self.params['mph'] = self.wc * self.params['nr']**2 # effective photon mass
self.rescale_int = params['rescale']
params['Nk'] = 2 * self.Q0+1 # total number of modes
self.Nm, self.Nk, self.Nnu = params['Nm'], params['Nk'], params['Nnu']
self.NE = self.Nm/self.Nk # Number of molecules in an ensemble
self.params['delta_r'] = params['L']/params['Nk'] # grid spacing in micrometers
self.params['delta'] = round(params['epsilon'] - self.wc, 5) # detuning
self.off_diag_indices_Nk = np.where(~np.eye(self.Nk,dtype=bool))
self.diag_indices_Nk = np.diag_indices(self.Nk)
def get_rates(self, params):
rates = {}
for name, val in params.items():
if 'Gam' or 'gam' in name:
rates[name] = val
rates['gam_up'] = rates['gam_nu'] * params['nb']
rates['gam_down'] = rates['gam_nu'] * (params['nb'] + 1)
rates['gam_delta'] = rates['gam_up'] - rates['gam_down']
rates['Gam_delta'] = rates['Gam_up'] - rates['Gam_down']
return rates
def get_modes(self):
Qs = np.array([Q for Q in self.get_Q_range()])
return Qs, (2*np.pi/self.params['L']) * Qs # integers, inverse microns
def get_Q_range(self, sign=1, offset=0, reverse=False, start=None):
if start == None:
shift = 0
else:
shift = start + self.Q0 # e.g. start=0 makes [0, 2Q0] rather than [-Q0,Q0], for indexing arrays
min_Q = max(-self.Q0, -self.Q0 - sign*offset)
max_Q = min(self.Q0, self.Q0 - sign*offset)
if reverse:
return range(max_Q+shift, min_Q-1+shift, -1)
# Q in [-Q0, Q0] such that offset + sign*Q is also in this interval
return range(min_Q+shift, max_Q+1+shift)
def make_state_dic(self):
Nk, Nnu = self.Nk, self.Nnu
slices = {}
names = ['ada', 'l', 'al', 'll']
self.state_dic = {
'ada': {'shape': (Nk, Nk)},
'l': {'shape': (2*Nnu**2-1, Nk)},
'al': {'shape': (Nnu**2, Nk, Nk)},
'll': {'shape': (Nnu**2, Nnu**2, Nk, Nk)},
}
self.state_split_list, self.state_reshape_list = [], []
tot = 0
for name in self.state_dic:
shape = self.state_dic[name]['shape']
self.state_reshape_list.append(shape)
num = np.prod(shape)
self.state_dic[name]['num'] = num
self.state_dic[name]['slice'] = slice(tot, tot+num)
self.state_split_list.append(tot+num)
tot += num
#self.state_split_list.pop()
self.added_state_length = 1# EXTRA entry appending to state to indicate if has been rescaled or not
self.state_length = np.sum([self.state_dic[name]['num'] for name in self.state_dic]) + self.added_state_length
correct_state_length = Nk**2 + (2*Nnu**2-1)*Nk + Nnu**2*Nk**2 + Nnu**4*Nk**2 + self.added_state_length
assert self.state_length == correct_state_length,\
f'state length is {self.state_length} but should be {correct_state_length}'
def wrapit(self, meth, msg='', timeit=True):
if msg:
logger.info(msg)
t0 = time()
ret = meth()
if timeit:
logger.info('...done ({:.2f}s)'.format(time()-t0))
return ret
def make_coeffs(self):
# dictionary for equation coefficients and constants used in their construction
coeffs, consts = {}, {}
gp = self.gp
params = self.params
rates = self.rates
Nm, Nk, Nnu = self.Nm, self.Nk, self.Nnu
Hvib = Boson(Nnu)
b, bd, bn, bi = Hvib.b, Hvib.bd, Hvib.n, Hvib.i
sm, sp, sz, si = Pauli.m, Pauli.p, Pauli.z, Pauli.i
A = 0.5*params['epsilon']*np.kron(sz, bi) +\
params['omega_nu']*np.kron(si, bn) +\
params['omega_nu']*np.sqrt(params['S'])*np.kron(sz, b+bd) + 0j
kba = False
if not kba:
# Kristin doesn't have this correction
A += 0.25 * (-1j * rates['gam_delta']) * np.kron(si, (bd @ bd - b @ b))
B = params['gSqrtN'] * np.kron(sp, bi)
C1 = np.sqrt(rates['Gam_z']) * np.kron(sz, bi)
if kba:
# and has different thermalisation
sz2 = np.kron(sz, bi)
S = params['S']
C2 = np.sqrt(rates['gam_up']) * (np.kron(si, bd) - np.sqrt(S) * sz2)
C3 = np.sqrt(rates['gam_down']) * (np.kron(si, b) - np.sqrt(S) * sz2)
else:
C2 = np.sqrt(rates['gam_up']) * np.kron(si, bd)
C3 = np.sqrt(rates['gam_down']) * np.kron(si, b)
Dp = np.sqrt(rates['Gam_up']) * np.kron(sp, bi)
Dm = np.sqrt(rates['Gam_down']) * np.kron(sm, bi)
consts['A0'], _discard = gp.get_coefficients(A, sgn=0, eye=True) # discard part proportional to identity
consts['Bp'] = gp.get_coefficients(B, sgn=1) # N.B. gets i_+ coefficients i.e. traces against lambda_{i_-}
consts['gam0'] = np.array([gp.get_coefficients(C, sgn=0) for C in [C1, C2, C3]])
consts['gamp'] = gp.get_coefficients(Dp, sgn=1)
consts['gamm'] = gp.get_coefficients(Dm, sgn=-1)
consts['gam00'] = contract('ar,ap->rp', consts['gam0'].conj(), consts['gam0']) # perform sum over mu_0
consts['gampp'] = contract('i,j->ij', consts['gamp'].conj(), consts['gamp'])
consts['gammm'] = contract('i,j->ij', consts['gamm'].conj(), consts['gamm'])
f000 = gp.f_tensor((0,0,0))
f011 = gp.f_tensor((0,1,1))
z000 = gp.z_tensor((0,0,0))
z011 = gp.z_tensor((0,1,1))
z011_swap = np.swapaxes(z011, 1, 2)
assert np.allclose(z011, np.conj(z011_swap))
zm011 = gp.z_tensor((0,-1,-1))
consts['xi'] = 2 * contract('ipj,p->ij', f000, consts['A0']) \
+ 2 * contract('irq,rp,qpj->ij', f000, consts['gam00'], z000).imag \
+ 2 * contract('ij,aip,bpj->ab', consts['gampp'], f011.conj(), zm011).imag \
+ 2 * contract('ij,aip,bpj->ab', consts['gammm'], f011, z011).imag
consts['phi0'] = (2/params['Nnu']) * contract('ajq,jq->a', f000, consts['gam00'].imag) \
+ (2/params['Nnu']) * contract('ij,aij->a', consts['gampp'], f011.conj()).imag \
+ (2/params['Nnu']) * contract('ij,aij->a', consts['gammm'], f011).imag
# Note gamm00 index order reversed below (conjugate)
consts['xip'] = - 2 * contract('aij,a->ij', f011, consts['A0']) \
+ 1j * contract('aip,ab,bpj->ij', f011, consts['gam00'], zm011.conj()) \
- 1j * contract('aip,ba,bpj->ij', f011, consts['gam00'], z011) \
+ 1j * contract('aip,qp,aqj->ij', f011, consts['gammm'], zm011.conj()) \
- 1j * contract('aip,pq,aqj->ij', f011, consts['gampp'], z011)
consts['xim'] = - 2 * contract('aij,a->ij', f011.conj(), consts['A0']) \
+ 1j * contract('aip,ab,bpj->ij', f011.conj(), consts['gam00'], z011.conj()) \
- 1j * contract('aip,ba,bpj->ij', f011.conj(), consts['gam00'], zm011) \
+ 1j * contract('aip,qp,aqj->ij', f011.conj(), consts['gampp'], z011.conj()) \
- 1j * contract('aip,pq,aqj->ij', f011.conj(), consts['gammm'], zm011)
shifted_Ks = np.fft.ifftshift(self.Ks) # ALL COMPUTATIONS DONE WITH numpy order of modes
#rolled_Ks = np.roll(self.Ks, -self.Q0) # equivalent to shifted_Ks
consts['kappa'] = self.kappa(shifted_Ks)
consts['omega'] = self.omega(shifted_Ks)
# CIJ means Jth coeff. of Ith eqn.
def expikr(K, n):
return np.exp(2j * np.pi / Nk * K * n)
#coeffs['expi_kn'] = np.zeros((Nk, Nk), dtype=complex)
coeffs['expi_kn'] = np.fromfunction(np.vectorize(expikr), (Nk, Nk)) # because of periodicity, this is sufficient
# EQ 1 , here p->k'
coeffs['11_pk'] = np.zeros((Nk, Nk), dtype=complex) # But MUST construct this manually!
#b = - ( 1j * -(np.vectorize(self.omega_diff)(shifted_Ks, shifted_Ks)) # minus due to index order
# + 0.5 * np.vectorize(self.kappa_sum)(shifted_Ks, shifted_Ks))
for i, K in enumerate(shifted_Ks):
#for j, n in enumerate(self.ns):
# coeffs['expi_kn'][i,j] = expikr(K, n)
for j, P in enumerate(shifted_Ks):
# EDIT 2023-10-26: Fixed sign of omega term!
coeffs['11_pk'][j,i] = (1j * self.omega_diff(P,K) - 0.5 * self.kappa_sum(P,K))
coeffs['12_1'] = 1j * consts['Bp']
coeffs['13_1'] = coeffs['12_1'].conj()
# EQ 2
coeffs['21_00'] = 1 * consts['xi'] # (make a copy)
# initially 1-d array of length N0, broadcast to N0xNk array by copying the original array into
# separate rows, then take transpose to get correct index order (in other words, this constant
# is the same at each ensemble n):
coeffs['22_0n'] = np.broadcast_to(consts['phi0'], (Nk, self.N0)).T
coeffs['23_01'] = 4 * contract('i,aij->aj', consts['Bp'], f011)
# EQ 3
coeffs['31_11k'] = contract('ij,k->ijk', consts['xip'], np.ones(Nk)) \
- contract('ij,k->ijk', np.eye(gp.indices_nums[1]),
1j * consts['omega'] + 0.5 * consts['kappa'])
coeffs['32_1'] = coeffs['12_1'].conj()
coeffs['33_1kn'] = 1j * contract('i,kn->ikn', consts['Bp'].conj(), coeffs['expi_kn']) / Nm
coeffs['34_1kn0'] = - contract('jkn,aij->ikna', coeffs['33_1kn'], z011)
coeffs['35_1kn'] = - coeffs['33_1kn'] / Nnu
coeffs['36_01'] = 2 * contract('aij,j->ai', f011, consts['Bp'].conj())
# EQ 4
coeffs['41_11'] = 1 * consts['xip']
coeffs['42_11'] = 1 * consts['xim']
coeffs['43_01'] = coeffs['36_01'].conj()
coeffs['44_01'] = 1 * coeffs['36_01']
if self.rescale_int==1:
coeffs['23_01'] *= (1/Nm)
coeffs['34_1kn0'] *= Nm
coeffs['35_1kn'] *= Nm
elif self.rescale_int==2:
sNm = np.sqrt(Nm)
coeffs['23_01'] *= (1/Nm) * (1/sNm)
#coeffs['32_1'] *= sNm
#coeffs['33_1kn'] *= sNm
coeffs['34_1kn0'] *= Nm * sNm
coeffs['35_1kn'] *= Nm * sNm
#coeffs['43_01'] /= sNm
#coeffs['44_01'] /= sNm
# HOPFIELD coefficients (in shifted basis i.e. K=0,1,2,...,Q0,-Q0,-Q0+1,....-1
consts['zeta_k'] = 0.5 * np.sqrt( (params['epsilon'] - consts['omega'])**2 + 4 * params['gSqrtN']**2 )
coeffs['X_k'] = np.sqrt(0.5 + 0.5**2 * (params['epsilon'] - consts['omega'])/consts['zeta_k'])
coeffs['Y_k'] = np.sqrt(0.5 - 0.5**2 * (params['epsilon'] - consts['omega'])/consts['zeta_k'])
assert np.allclose(coeffs['X_k']**2+coeffs['Y_k']**2, 1.0), 'Hopfield coeffs. not normalised'
consts['vsigma'] = gp.get_coefficients(np.kron(sp, bi), sgn=1, eye=False)
assert np.allclose(consts['vsigma'].imag, 0.0)
consts['vvsigma'] = self.Nnu/2
assert np.allclose(consts['vvsigma'], contract('i,i', consts['vsigma'], consts['vsigma']))
assert np.allclose(contract('i,inm->nm', consts['vsigma'], gp.basis[gp.indices[1]]), np.kron(sp,bi))
# CHECKING n_M part of n_B
#C0, D0 = gp.get_coefficients(np.kron(np.matmul(sp,sp.T),bi), sgn=0, eye=True)
#print(np.isclose(contract('i,i',consts['varsigma'],np.conj(consts['varsigma']))/self.Nnu, D0))
#print(np.allclose(C0, contract('i,j,aij',consts['varsigma'], np.conj(consts['varsigma']), z011)))
#sys.exit()
# COefficients used to calculate observables
ocoeffs = {}
# 'pup_l' and 'pup_I' are C^0_{i_0} and D^0 in thesis
ocoeffs['pup_l'], ocoeffs['pup_I'] = \
self.gp.get_coefficients(np.kron(Pauli.p1, self.boson.i), sgn=0, eye=True)
assert np.allclose(contract('a,anm->nm', ocoeffs['pup_l'], gp.basis[gp.indices[0]]),
np.kron(Pauli.p1, bi)-ocoeffs['pup_I']*np.eye(2*self.Nnu))
assert np.allclose(ocoeffs['pup_I'], 0.5)
ocoeffs['sp_l'] = consts['vsigma']
ocoeffs['rn'] = params['delta_r'] * self.ns
ocoeffs['rn2'] = ocoeffs['rn']**2
ocoeffs['msrn'] = (ocoeffs['rn'] - 0.5 * params['L'])**2
# assign to instance variables
self.consts, self.coeffs, self.ocoeffs = consts, coeffs, ocoeffs
def omega(self, K):
# dispersion to match MODEL used by Xu et al. 2023 (self.K_factor set in
# self.add_useful_params)
return self.wc * np.sqrt(1 + self.K_factor**2 * K**2)
def kappa(self, K):
# uniform
return self.params['kappa_c'] * np.ones_like(K)
def deltak(self, k=0):
return np.array([1.0 if q==k else 0.0 for q in self.get_Q_range()])
def cg(self, K):
return self.c * self.K_factor * K / np.sqrt(1 + self.K_factor**2 * K**2)
def velocity(self, t, D, alpha):
return alpha * D * t**(alpha-1)
def omega_diff(self, K, P):
return self.omega(K) - self.omega(P)
def kappa_sum(self, K, P):
return self.kappa(K) + self.kappa(P)
def partition(self, T):
if T==0.0:
return 1.0
if T==np.inf:
return self.params['Nnu']
Nnu, omnu = self.params['Nnu'], self.params['omega_nu']
return (1-np.exp(-Nnu * omnu / T))/(1-np.exp(-omnu/T))
def thermal_rho_vib(self, T):
if T==0.0:
ps = [1.0 if n==0 else 0.0 for n in range(self.Nnu)]
return np.diag(ps)
if T==np.inf:
return (1/self.Nnu) * np.eye(self.Nnu)
Z = self.partition(T)
ps = [np.exp(-n * self.params['omega_nu'] / T) for n in range(self.Nnu)]
return (1/Z) * np.diag(ps)
def nb(self, T):
if T==0.0:
return 0.0
return 1/(np.exp(self.params['omega_nu']/self.params['T'])-1)
def create_initial_state(self):
form = self.params['initial_state']
if form=='incoherent':
self.initial_state = self.incoherent_state()
elif form=='photonic':
raise NotImplemented
else:
print(f'State form {form} unknown')
sys.exit(1)
def incoherent_state(self):
if self.params['sigma_f'] != 0:
# absolute width specification (microns) of initial profile width
self.params['sigma_0'] = self.params['sigma_f']/self.params['L']
self.plot_initial_profile()
state = np.zeros(self.state_length, dtype=complex)
mid_index = self.Nk//2
if self.params['sigma_0'] == 0:
pex = self.params['pex'] * np.ones(self.Nk)
else:
pex = self.params['pex'] * \
np.exp(-(self.ns-mid_index)**2/(2*(self.Nk*self.params['sigma_0'])**2))
rho0_vib = self.thermal_rho_vib(self.params['T']) # molecular vibrational density matrix
l, self.all_eye0s = [], [] # all_eye0s only needed if want to recreate d.m. on a site
for n in range(self.Nk):
rho0n = np.kron(np.diag([pex[n],1-pex[n]]), rho0_vib) # total molecule density operator
coeffs0, eye0 = self.gp.get_coefficients(rho0n, sgn=0, eye=True, warn=False)
l.append(2 * coeffs0)
self.all_eye0s.append(eye0)
l = np.real(l).T # i_0 index first, then ensemble index n
state[self.state_dic['l']['slice']] = l.flatten()
state[-1] = -1 # indicates state has NOT been rescaled
return state
def evolve(self, tf=None, tf_fs=None):
"""Integrate second-order cumulants equations of motion from a state of incoherent excitons
at t=0 to a time tf (in natural units) or tf_fs (femptoseconds)"""
assert np.sum(np.array([tf, tf_fs]) == None) == 1,\
'Exactly one of parameters \'tf\' and \'tf_fs\' must be given'
dt = self.params['dt']
if tf is not None:
tf_fs = tf * self.EV_TO_FS
self.t = np.arange(0.0, tf, step=dt)
self.t_fs = self.t * self.EV_TO_FS
else:
tf = tf_fs / self.EV_TO_FS
self.t_fs = np.arange(0.0, tf_fs, step=dt)
self.t = self.t_fs / self.EV_TO_FS
self.num_t = len(self.t)
state_MB = sys.getsizeof(self.initial_state) / 1024**2
logger.info(f'State length {len(self.initial_state):.2e} requiring {state_MB:.0f} MB')
logger.info(f'Integrating 2nd-order EoMs to tf={self.t_fs[-1]:.0f}fs with interpolation'\
f' to fixed grid of spacing dt={dt:.3g}')
self.select_t_fs = [0, 0.25, 50, 100, 200] # record large selection of variables in k-space at these times only
#self.select_t_fs = list(np.arange(45,55,step=dt))
self.select_t = [t / self.EV_TO_FS for t in self.select_t_fs]
self.select_t_index = 0
self.setup_observable_storage() # creates self.observables data dictionary
#
t_index = 0 # indicates current position in output grid of times
num_checkpoints = 11 # checkpoints at 0, 10%, 20%,...
checkpoint_spacing = int(round(self.num_t/num_checkpoints))
checkpoints = np.linspace(0, self.num_t-1, num=num_checkpoints, dtype=int)
next_check_i = 1
last_solver_i = 0
solver_t = [] # keep track of solver times too (not fixed grid)
tic = time() # time the computation
rk45 = SOLVER(self.eoms,
t0=0.0,
y0=self.initial_state,
t_bound=tf,
rtol=self.params['rtol'],
atol=self.params['atol'],
# N.B. max_step makes little difference in terms of computation, maybe more accurate (?)
#max_step=dt,
)
# Save initial state
assert rk45.t == self.t[t_index], 'Solver initial time incorrect'
self.record_observables(t_index, rk45.y) # record physical observables for initial state
solver_t.append(rk45.t)
t_index += 1
next_t = self.t[t_index]
while rk45.status == 'running':
end = False # flag to break integration loop
rk45.step() # perform one step (necessary before call to dense_output())
solver_t.append(rk45.t)
if rk45.t >= next_t: # solver has gone past one (or more) of our grid points, so now evaluate soln
soln = rk45.dense_output() # interpolation function for the last timestep
while rk45.t >= next_t: # until soln has been evaluated at all grid points up to solver time
y = soln(next_t)
self.record_observables(t_index, y) # extract relevant observables from state y
t_index += 1
if t_index >= self.num_t: # reached the end of our grid, stop solver
end = True
break
next_t = self.t[t_index]
if next_check_i < num_checkpoints and t_index >= checkpoints[next_check_i]:
solver_diffs = np.diff(solver_t[last_solver_i:])
logger.info('Progress {:.0f}% ({:.0f}s)'.format(100*(checkpoints[next_check_i]+1)/self.num_t, time()-tic))
logger.info('Avg. solver dt for last part: {:.2g} (grid dt={:.3g}; {:.3g}fs)'\
.format(np.mean(solver_diffs), dt, dt*self.EV_TO_FS))
#logger.info('Avg. solver dt over last interval: {:.2g} (unscaled units) '\
# ' compared to set dt={} (considering adjusting if large difference)'.format(
# np.mean(solver_diffs), dt))
# If solver time step far larger, can increase dt to save memory and computation time
# If solver time step far smaller, may be missing physical information
next_check_i += 1
last_solver_i = len(solver_t) - 1
if end:
break # safety, stop solver if we have already calculated state at self.t[-1]
toc = time()
self.compute_time = toc-tic # ptoc-ptic
logger.info('...done ({:.0f}s)'.format(self.compute_time))
def setup_observable_storage(self):
"""Prepare dictionary self.observables to store values of relevant observables
These arrays (or arrays in dictionaries) are zero initialised and then assigned
non-zero values in place by self.record_observables during the computation
"""
Ns = self.num_t
ns = np.zeros((Ns, self.Nk), dtype=float)
#ph_dic, mol_dic, coh_dic = 3*[self.blank_density_dic()] # DO NOT USE - creates list of 3 references to the same object! (same for e.g. x,y = 2*[np.array([1])])!
ph_dic, mol_dic, coh_dic = self.blank_density_dic(), self.blank_density_dic(), self.blank_density_dic(dtype=complex)
if self.params['calculate_lp']:
nALs, nBLs, nCLs, nLPs = [np.zeros((Ns, self.Nk), dtype=float) for i in range(4)]
else:
nALs, nBLs, nCLs, nLPs = 4 * [None]
num_select_t = len(self.select_t)
select_ts = np.empty((num_select_t,), dtype=float)
select_ts[:] = np.nan # so we know haven't been assigned yet
adaks = np.zeros((num_select_t, self.Nk, self.Nk), dtype=complex)
lqs = np.zeros((num_select_t, self.Nk), dtype=complex)
akls = np.zeros((num_select_t, self.Nk, self.Nk), dtype=complex)
llks = np.zeros((num_select_t, self.Nk, self.Nk), dtype=complex)
nBs = np.zeros((Ns, self.Nk), dtype=float)
nDs = np.zeros((Ns, self.Nk), dtype=float)
self.observables = {'params': self.params,
't': self.t,
't_fs': self.t_fs,
'n': ns,
'nB': nBs,
'nD': nDs,
'ph_dic': ph_dic,
'mol_dic': mol_dic,
'coh_dic': coh_dic,
'select_data': {'select_t': select_ts,
'adak': adaks,
'lq': lqs,
'alk': akls,
'llk': llks,
},
'LP': {'nLP': nLPs,
'nAL': nALs,
'nBL': nBLs,
'nCL': nCLs,
}
}
def blank_density_dic(self, dtype=float):
Ns = self.num_t
return {'vals': np.zeros((Ns, self.Nk), dtype=dtype),
'mean': np.zeros((Ns,), dtype=dtype),
'var': np.zeros((Ns,), dtype=dtype),
'msd': np.zeros((Ns,), dtype=dtype),
}
def record_observables(self, t_index, y):
"""Calculates and saves observable values from state y at timestep t_index
To add additional observables, add a key-empty array to self.observables e.g.
self.observables['my_obs'] in self.setup_storage_observables and then write a
function to take state, calculate value of observable and assign to
self.observables['my_obs'][t_index]
"""
# This is only copy of entire state we make. Essential -otherwise we would be modifying solver's state!
# To avoid this copy overhead, don't rescale until AFTER calculating each observable (significant rewrite)
state = y.copy()
t = self.t[t_index]
self.rescale_state(state) # correct scale of variables to calculate physical quantities (state modified in-place)
ada, l, al, ll = self.split_reshape_return(state, check_rescaled=True) # VIEWS of original state i.e. modifying tate will change ada, l, al and ll and vice versa
# The following directly update the instance variable self.observables which is a
# dictionary containing numpy arrays of fixed length
self.calculate_n(t_index, ada)
if self.params['calculate_lp']:
self.calculate_lp_contributions(t_index, ada, l, al, ll)
self.calculate_densities(t_index, ada, l, al)
self.calculate_bright_dark(t_index, ll)
if self.select_t_index < len(self.select_t):
if t >= self.select_t[self.select_t_index]:
self.calculate_k_observables(t_index, ada, l, al, ll)
self.select_t_index += 1
def rescale_states(self, ys):
"""Rescale each state in ys before calculating physical observables
ys an array where each column corresponds to a state i.e. y.t[0] is
initial state. Currently unused (now always work with one state at a time)"""
ada, l, al, ll, rescaled_arr = np.hsplit(ys, self.state_split_list)
if not np.all(rescaled_arr==-1):
# could handle this e.g. loop from states and only rescale those
# which have not already been rescaled
logger.critical('some states have already been rescaled!')
sys.exit(1)
# N.b. split returns a view so following change state directly!
if self.rescale_int == 0:
ada *= self.Nm
al *= np.sqrt(self.Nm)
elif self.rescale_int == 1:
al /= np.sqrt(self.Nm)
ll /= self.Nm
elif self.rescale_int == 2:
al /= self.Nm
ll /= (self.Nm * np.sqrt(self.Nm))
ada /= np.sqrt(self.Nm)
# finite value indicates state has been rescaled
rescaled_arr[:] = self.rescale_int # updates all entries (whether y contains 1 state or hundreds)
def rescale_state(self, state):
"""Rescale state before calculating physical observables
N.B. state is modified in place and so does not need to be returned"""
assert len(state.shape) == 1, 'state must be a 1-d array (single state)'
ada, l, al, ll, rescaled_arr = np.split(state, self.state_split_list)
#print('Max ada | l | al | ll = {:.0e} | {:.0e} | {:.0e} | {:.0e}'.format(*[np.max(np.abs(X)) for X in [ada, l, al, ll]]))
assert rescaled_arr[0]==-1, 'State has already been rescaled!'
if self.rescale_int == 0:
ada *= self.Nm
al *= np.sqrt(self.Nm)
elif self.rescale_int == 1:
al /= np.sqrt(self.Nm)
ll /= self.Nm
elif self.rescale_int == 2:
al /= self.Nm
ll /= (self.Nm * np.sqrt(self.Nm))
ada /= np.sqrt(self.Nm)
rescaled_arr[0] = self.rescale_int # non-negative value indicates state has been rescaled
def split_reshape_return(self, state, check_rescaled=False, copy=False):
"""Return views of variables <a^dag_k'a_k>, <lambda_n^i>, <a_k lambda_n^i>, <lambda_n^i lamnbda_m^j>
in state reshaped into conventional multidimensional arrays."""
split = np.split(state, self.state_split_list) # ada, l, al, ll, rescaled_arr as flattened arrays
if check_rescaled:
assert not np.isnan(split[-1][0]), 'State must be rescaled'
# reshape each array except the 'rescaled_arr' (contains int indicating rescaling factor used)
reshaped = [split[i].reshape(self.state_reshape_list[i]) for i in range(len(self.state_reshape_list))]
# N.B. np.split, reshape returns VIEWS of original array; BEWARE mutations
# - copy if want to change return without mutating original state variable
if copy:
reshaped = [np.copy(X) for X in reshaped]
return reshaped
def eoms(self, t, state):
"""Equations of motion as in cumulant_in_code.pdf"""
C = self.coeffs
ada, l, al, ll = self.split_reshape_return(state)
# Calculate DFTs
alpha = ifft(ada, axis=0, norm='forward')
d = fft(al, axis=1, norm='backward') # backward default
# EQ 1 # N.B. kp->pk ordering
#t0 = time()
#c = fft(al, axis=2, norm='forward')
#dy_ada = C['11_pk'] * ada + contract('i,ikp->pk', C['12_1'], c) \
# + contract('i,ipk->pk', C['13_1'], c.conj())
#t1 = time()-t0
pre_c = contract('i,ikn->kn', C['12_1'], al)
post_c = fft(pre_c, axis=1, norm='forward')
dy_ada2 = C['11_pk'] * ada + np.transpose(post_c) + np.conj(post_c)
#t2 = time()-t0
#assert np.allclose(dy_ada, dy_ada2)
#print('Fastest {:.2g}s, Saved {:.2g}s'.format(t2, 2*t1-t2))
# EQ 2
dy_l = contract('ab,bn->an', C['21_00'], l) + C['22_0n'] + contract('aj,jnn->an', C['23_01'], d).real
# EQ 3
#t0 = time()
#beta = ifft(ll, axis=-1, norm='backward') # backward default
#dy_al = contract('ijk,jkn->ikn', C['31_11k'], al) \
# + contract('j,ijnk->ikn', C['32_1'], beta) \
# + contract('jkn,ijnn->ikn', C['33_1kn'], ll) \
# + contract('ikna,an->ikn', C['34_1kn0'], l) \
# + C['35_1kn'] \
# + contract('ai,an,nk->ikn', C['36_01'], l, alpha)
#t1 = time()-t0
pre_beta = contract('j,ijnm->imn', C['32_1'], ll) # N.B. swapped axes
post_beta = ifft(pre_beta, axis=-2, norm='backward') # See Eqs.
dy_al2 = contract('ijk,jkn->ikn', C['31_11k'], al) \
+ post_beta \
+ contract('jkn,ijnn->ikn', C['33_1kn'], ll) \
+ contract('ikna,an->ikn', C['34_1kn0'], l) \
+ C['35_1kn'] \
+ contract('ai,an,nk->ikn', C['36_01'], l, alpha)
#t2 = time()-t0
#assert np.allclose(dy_al, dy_al2)
#print('Fastest {:.2g}s, Saved {:.2g}s'.format(t2, 2*t1-t2))
dy_ll = contract('ip,pjnm->ijnm', C['41_11'], ll) \
+ contract('jp,ipnm->ijnm', C['42_11'], ll) \
+ contract('aj,am,imn->ijnm', C['43_01'], l, d) \
+ contract('ai,an,jnm->ijnm', C['44_01'], l, d.conj())
dy_rescale_int = np.zeros(1)
# flatten and concatenate to match input state structure (1d array)
dy_state = np.concatenate((dy_ada2, dy_l, dy_al2, dy_ll, dy_rescale_int), axis=None)
return dy_state
# could instead initialise dy_state = np.zeros_like(state) at the top
# and assign the results (e.g. dy_l.ravel() or dy_l.reshape(-1); del dy_l)
# as go along, but not way to avoid some copying unless work without reshaping
# (or write state in such a way that a single .reshape(-1) gives the correct order)
WARN_REAL = {}
def check_real(self, step, arr, name):
if name not in self.WARN_REAL:
self.WARN_REAL[name] = True
if not self.WARN_REAL[name]:
return
if not np.allclose(np.imag(arr), 0.0):
t = self.t[step]
logger.warning(f'{name} at t={t} has non-zero imaginary part (further warnings suppressed)')
self.WARN_REAL[name] = False
def calculate_n(self, t_index, ada):
# ada and l must have already been rescaled
ns = fftshift(np.diag(ada))
self.check_real(ns, t_index, 'Photon numbers')
self.observables['n'][t_index] = np.real(ns)
def calculate_k_observables(self, t_index, ada, l, al, ll):
z011 = self.gp.z_tensor((0,1,1))
t = self.t[t_index]
self.observables['select_data']['select_t'][self.select_t_index] = t
self.observables['select_data']['adak'][self.select_t_index] = ada
ps = contract('a,an->n', self.ocoeffs['pup_l'], l) + self.ocoeffs['pup_I']
self.check_real(t_index, ps, 'Exciton populations (all)')
self.observables['select_data']['lq'][self.select_t_index] = fftshift(fft(ps)) # -ve exponent (arbitrary choice)
# AL - > a sigma^+ coherences -> FFT (correct sign)
asp_kn = contract('ikn,i->kn', al, self.ocoeffs['sp_l'])
alk = np.diag(fftshift(fft(asp_kn, norm='forward', axis=-1))) # N.B. OLD CODE ONLY fftshift over axes=[-1]???
self.observables['select_data']['alk'][self.select_t_index] = alk
# LL -> sigma^+ sigma^- coherences for n \neq m, then add n=m component from l
# Then double FFT
#spsm = self.NE**2 * contract('ijnm,i,j->nm', ll, sp_coeffs, sm_coeffs) # note diagonal entries will be 0
# Old code - does not look right
din = self.diag_indices_Nk
#ll_all = np.copy(ll) # N.B. avoid modifying original array!
#ll_all[:,:,*din] *= (self.NE-1)/self.NE
#ll_all[:,:,*din] += contract('aij,an->ijn', z011, l)
#ll_all[:,:,*din] += (1/self.Nnu) * contract('ij,n->ijn', np.eye(self.N1), np.ones(self.Nk))
#spsm = contract('ijnm,i,j->nm', ll_all, self.ocoeffs['sp_l'], self.ocoeffs['sp_l'])
#spsm_k = fft(spsm, axis=0, norm='forward')
#spsm_kp = ifft(spsm_k, axis=-1, norm='forward')
#spsm_kk = np.diag(fftshift(spsm_kp))
#self.check_real(t_index, spsm_kk, '<sig^+sig^->[k,k]')
#self.observables['select_data']['llk'][self.select_t_index] = spsm_kp #np.real(spsm_kk)
# Contribution from populations
l0 = contract('a,an->n', self.ocoeffs['pup_l'], l) + self.ocoeffs['pup_I']
l02 = contract('n,nm->nm', l0, np.eye(self.Nk))
# Coherences - scale by NE, except for diagonal elements which need (NE-1)
llA = contract('ijnm,i,j->nm', ll, self.consts['vsigma'], self.consts['vsigma'])
llA2 = self.NE * llA
llA2[din] *= (self.NE-1)/self.NE
llB2 = llA2 + l02 # add contributions
#llD = contract('n,nm->nm', llA[din], np.eye(self.Nk))
#assert np.allclose(self.NE * llA - llD, llA2) # True
#llB = self.NE * llA - llD + l02
#spsm2 = ifft(fft(llB, axis=0), axis=1)
spsm3 = ifft(fft(llB2, axis=0), axis=1) # take transforms
self.observables['select_data']['llk'][self.select_t_index] = spsm3 #np.real(spsm_kk)
def calculate_densities(self, t_index, ada, l, al):
alpha = ifft(ada, axis=0) # EDIT 2023-11-03: Now including 1/N_k normalisation!
dft2 = fft(alpha, axis=-1)
nph = np.diag(dft2) # n(r_n) when n=m
self.check_real(t_index, nph, 'Photon density')
self.observables['ph_dic']['vals'][t_index] = nph.real
# N.B. we do not need to use the coefficients of the initial density
# matrix for the identity matrix (self.coeff_eyes), that is only
# relevant if we want to create the density matrix; instead just note if
# OP = A lambda0 + B lambda1 + C I then <OP> = A <lambda0> + B<lambda1>
# + C since <I>=1 should always be true, i.e. Tr[rho]==1
nM = self.NE * (contract('a,an->n', self.ocoeffs['pup_l'], l) + self.ocoeffs['pup_I'])
# 2023-11-14 EDIT: Bug - forgot parenthesis to NE * constant part"
self.check_real(t_index, nM, 'Molecular density')
self.observables['mol_dic']['vals'][t_index] = nM.real
asp = contract('i,ikn->kn', self.ocoeffs['sp_l'], al)
dft = fft(asp, axis=0)
coh = self.NE * np.diag(dft)
self.observables['coh_dic']['vals'][t_index] = coh
self.calculate_moments('ph_dic', t_index)
self.calculate_moments('mol_dic', t_index)
self.calculate_moments('coh_dic', t_index)
def calculate_moments(self, name, t_index):
weights = np.abs(self.observables[name]['vals'][t_index])
if np.isclose(np.sum(weights), 0.0):
return 3 * [np.nan]
avg = lambda x: np.average(x, weights=weights)
mean = avg(self.ocoeffs['rn'])
self.observables[name]['mean'][t_index] = mean
self.observables[name]['var'][t_index] = avg(self.ocoeffs['rn2']) - mean**2
self.observables[name]['msd'][t_index] = avg(self.ocoeffs['msrn'])
def calculate_bright_dark(self, t_index, ll):
diag_ind = self.diag_indices_Nk
nM = self.observables['mol_dic']['vals'][t_index] # assumes calculate_densities has already been called
#nM2 = self.NE * (contract('a,an->n', self.ocoeffs['pup_l'], l) + self.ocoeffs['pup_I'])
#assert np.allclose(nM, nM2), "ERROR IN nM CALCULATION"
ll_diag = ll[:,:,*diag_ind] # diagonal entries at EACH i,j N.B. returns a new array
ssll = contract('i,j,ijn->n',
self.consts['vsigma'],
self.consts['vsigma'],
ll_diag)
nB = (self.NE-1) * ssll + nM/self.NE
nD = nM-nB
#print('NE = {:.0f}, 1/NE = {:.3g}, Bright/Tot = {:.3g}'.format(self.NE, 1/self.NE,
# np.real(np.sum(nB)/np.sum(nM))))
#Emol = (1/constants.e) * constants.h * self.c / (self.params['L']*1e-6/self.Nm)
#numer = np.sqrt((self.params['gSqrtN'] + self.params['epsilon'])**2 - self.params['omega_c']**2)
#print('Numer = {:.3g}, Emol = {:.3g}, Numer/Emol = {:.3g}'.format(numer, Emol, numer/Emol))
#print('overall ratio = {:.2g}'.format((numer/Emol) / (np.real(np.sum(nB)/np.sum(nM)))))
self.check_real(t_index, nB, 'Bright state')
#self.check_real(t_index, nD, 'Dark state') # must be real if nM, nB checked for real
self.observables['nB'][t_index] = np.real(nB)
self.observables['nD'][t_index] = np.real(nD)
def calculate_lp_contributions(self, t_index, ada, l, al, ll):
# Hopfield matter Y and optical X coefficients in shifted basis i.e. K=0,1,2,...,Q0,-Q0,-Q0+1,....-1
X, Y = self.coeffs['X_k'], self.coeffs['Y_k']
vsig = self.consts['vsigma']
z011 = self.gp.z_tensor((0,1,1))
# OPTICAL CONTRIBUTION
nAL = np.diag(fft(ifft(contract('p,k,pk->pk', X, X, ada), norm='forward', axis=-1), norm='backward', axis=0))
self.check_real(t_index, nAL, 'nAL(r_n)')
# COHERENT CONTRIBUTIONS - includes sign and conjugate, necessarily real
cp = (self.NE / np.sqrt(self.Nm)) * fft(contract('i,ikn->kn', vsig, al), axis=-1, norm='backward')
nCL = -2*np.real(np.diag(fft(ifft(contract('p,k,kp->kp',Y,X,cp), norm='forward', axis=0), norm='backward', axis=-1)))
# EXCITON CONTRIBUTION
eta = self.NE * fft(ifft(contract('i,j,ijnm->nm', vsig, vsig, ll),
axis=-1, norm='backward'),
axis=0, norm='backward')
phi = ifft(contract('i,j,ijnn->n', vsig, vsig, ll), axis=-1, norm='backward')
l0 = ifft(contract('i,j,aij,an->n', vsig, vsig, z011, l), axis=-1, norm='backward')
# Constant term - this could be construct in make coefficients for
T4 = (1/self.Nnu) * self.consts['vvsigma'] * np.eye(self.Nk)
# TESTING each term has required symmetry
#print('t={}'.format(t[step]))
#assert np.allclose(Y.imag, 0.0), "Y"
#assert np.allclose(np.conj(np.swapaxes(eta, 0, 1)), eta), "eta"
#assert np.allclose(np.conj(fftshift(phi)), np.flip(fftshift(phi))), "phi"
#assert np.allclose(l.imag, 0.0), "l"
#assert np.allclose(np.conj(fftshift(l0)), np.flip(fftshift(l0))), "l0"
# Construct matrices manually and double FFT - an order of magnitude faster than manually performing DFTs
nBL2 = np.zeros(self.Nk, dtype=complex)
eta2 = np.swapaxes(eta, 0, 1)
phi2 = np.zeros_like(eta)
l02 = np.zeros_like(eta)
for k, p in itertools.product(range(self.Nk), range(self.Nk)):
phi2[k,p] = phi[k-p]
l02[k,p] = l0[k-p]
toDFT = contract('p,k,kp->kp', Y, Y, eta2-phi2+l02+T4)
DFT = fft(ifft(toDFT,norm='forward',axis=0),norm='backward',axis=1)
nBL2 = np.diag(DFT)
self.check_real(t_index, nBL2, 'nBL(r_n)')
self.observables['LP']['nAL'][t_index] = nAL.real
self.observables['LP']['nBL'][t_index] = nBL2.real
self.observables['LP']['nCL'][t_index] = nCL
self.observables['LP']['nLP'][t_index] = nAL.real+nCL+nBL2.real
def export_data(self, fp=None):
if fp is None:
fp = self.gen_fp()
if not os.path.exists(os.path.dirname(fp)):
os.makedirs(os.path.dirname(fp))
with open(fp, 'wb') as fb:
pickle.dump(self.observables, fb)
logger.info(f'Wrote parameters & dynamics data to {fp}')
def import_data(self, fp=None):
if fp is None:
fp = self.generate_fp()
with open(fp, 'rb') as fb:
self.observables = pickle.load(fb)
logger.info('Loaded parameters and dynamics data from {fp}')
def gen_fp(self):
fname = 'Nnu{Nnu}/Nk{Nk}/gn{gSqrtN}S{S}Gamz{Gam_z}.pkl'.format(**self.params)
return os.path.join(self.DEFAULT_DIRS['data'], fname)
def get_labels(self):
return {'K': r'\(K\)',
't': r'\(t\)',
't_fs': r'\(t\) \rm{(fs)}',
'rn': r'\(r_n\) \rm{(}\(\mu\)\rm{m)}',
'ph_rn': r'\(n_{\rm{\text{ph}}}(t, r_n)\)',
'ph_rn0': r'\(n_{\rm{\text{ph}}}(t, r_n)-n_{\rm{\text{ph}}}(0, r_n) \)',
'ph_rms': r'\(\sqrt{\text{\rm{MSD}}[n_{\text{ph}}]}\) \rm{(}\(\mu\)\rm{m}\({}^2\)\rm{)}',
'mol_rn': r'\(n_{M}(t, r_n)\)',
'mol_rn0': r'\(n_{M}(t, r_n)-n_M(0,r_n)\)',
'mol_rms': r'\(\sqrt{\text{\rm{MSD}}[n_{M}]}\) \rm{(}\(\mu\)\rm{m}\({}^2\)\rm{)}',
'ph0nM0': r'\(\Delta n_{\rm{\text{ph}}}+ \Delta n_{M}\)',
'coh': r'\(\lvert\langle a \sigma^+\rangle\rvert(t,r_n)\)',
'nB': r'\(n_{\mathcal{B}}(t,r_n)\)',
'nB0': r'\(n_{\mathcal{B}}(t,r_n)-n_{\mathcal{B}}(0,r_n)\)',
'nD': r'\(n_{\mathcal{D}}(t,r_n)\)',
'nD0': r'\(n_{\mathcal{D}}(t,r_n)-n_{\mathcal{B}}(0,r_n)\)',
'Dph': r'\(\Delta n_{\rm{\text{ph}}}\)',
'DnM': r'\(\Delta n_{M}\)',
'DnB': r'\(\Delta n_{\mathcal{B}}\)',
'DnD': r'\(\Delta n_{\mathcal{D}}\)',
'D': r'\(\Delta n_X(t) = \sum_{n} \left(n_X(t, r_n) - n_X(0, r_n)\right)\)',
}
def plot_all(self):
fig, axes = plt.subplots(5,2,figsize=(8,18))
fig.suptitle(r'\texttt{{c2v2 {}}}'.format(datetime.now().strftime('%Y-%m-%d %H:%M')), y=0.925)
plt.subplots_adjust(wspace=0.25, hspace=0.35)
params = self.params
# PANEL A - initial profile with dispersion inset
n1, pex1, n2, pex2 = self.plot_initial_profile(data_only=True)
k1, w1, k2, w2 = self.plot_dispersion(data_only=True)
axes[0,0].set_title(r'\(p^\uparrow_n(0, r_n)\)', y=1.0)
axes[0,0].plot(self.params['delta_r'] * n1, pex1, ls='--')
axes[0,0].scatter(self.params['delta_r'] * n2, pex2, marker='.', c='r', s=75, zorder=2)
axes[0,0].xaxis.set_major_locator(MaxNLocator(integer=True))
L = self.params['L']
axes[0,0].set_xlim([None,L*1.0425])
axes[0,0].set_xticks([0,L/4,L/2,3*L/4,L])
axes[0,0].set_xticklabels(['\(0\)','\(L/4\)','\(L/2\)','\(3L/4\)','\(L\)'])
ax1in = axes[0,0].inset_axes([0.7,0.7,0.25,0.25])
ax1in.plot(k1, w1, c='orange')
ax1in.scatter(k2, w2, c='k', s=5, zorder=2)
#ax1in.set_yticks([L for L in ax1in.get_yticks()])
#ax1in.set_yticklabels([r'\({:.2f}\)'.format(L) for L in ax1in.get_yticks()])
# PANEL B - parameters
#relevant_parameters = \
size_params = \
[#r'\rm{Size}',
r'\(N_m=10^{{{:.0f}}}\qquad L={:.0f}\mu\text{{m}}\)'.format(np.log10(self.Nm), L),
r'\(N_k={}\)\qquad\(N_\nu={}\)'.format(self.Nk, self.Nnu),
#r'\(N_\nu={}\)'.format(self.Nnu),
]
sys_params = \
[
#'\n',
r'\rm{System (eV)}',
r'\(\omega_c={}\), \(\epsilon={}\)'.format(params['omega_c'], params['epsilon']),
#r'\(\omega_c={}\)'.format(params['omega_c']),
#r'\(\epsilon={}\)'.format(params['epsilon']),
r'\(n_r={}\)'.format(params['nr']),
r'\(g\sqrt{{N_m}}={:.3g}\)'.format(params['gSqrtN']),
]
rate_params = \
[
#'\n',
r'\rm{Rates (eV)}',
r'\(\kappa={}\)'.format(params['kappa_c']),
r'\(\Gamma_\uparrow={}\)'.format(params['Gam_up']),
r'\(\Gamma_\downarrow={}\)'.format(params['Gam_down']),
r'\(\Gamma_z={}\)'.format(params['Gam_z']),
]
def pow_str(flo, prec=1):
flo = float(flo)
r0a = '{:.{prec}e}'.format(flo, prec=prec).split('e')
r0a[1] = r0a[1].replace('0','')
return r'\({}\!\times\!10^{{{}}}\)'.format(*r0a)
bath_params = \
[
#'\n',
r'\rm{Bath (eV)}',
r'\(S={}\)'.format(params['S']),
r'\(\omega_\nu={}\)'.format(params['omega_nu']),
r'\(T={}\)'.format(params['T']),
#r'\(\gamma_\nu (\gamma_\uparrow, \gamma_\downarrow)={}\ ({:.1e}, {:.1e})\)'.format(
# params['gam_nu'], self.rates['gam_up'], self.rates['gam_down']),
r'\(\gamma_\nu={}\)'.format(params['gam_nu']),
r'\(\gamma_\uparrow= \) {}'.format(pow_str(self.rates['gam_up'])),
r'\(\gamma_\downarrow= \) {}'.format(pow_str(self.rates['gam_down'])),
]
numeric_params = \
[
#'\n',
r'\rm{Computation}',
r'\rm{{atol}} \(=\) {}'.format(pow_str(params['atol'], prec=0)),
r'\rm{{rtol}} \(=\) {}'.format(pow_str(params['rtol'], prec=0)),
#r'\rm{{runtime}} \(={:.1f}\)s'.format(self.compute_time),
r'\rm{{runtime:}} {}'.format(timedelta(seconds=round(self.compute_time))),
# Scaling string
]
axes[0,1].get_xaxis().set_visible(False)
axes[0,1].get_yaxis().set_visible(False)
axes[0,1].text(0.5, 0.975, '\n'.join(size_params),
ha='center', va='top', transform=axes[0,1].transAxes, size='small') # axis coords
axes[0,1].text(0.25, 0.8, '\n'.join(sys_params),
ha='center', va='top', transform=axes[0,1].transAxes, size='small') # axis coords
axes[0,1].text(0.75, 0.8, '\n'.join(rate_params),
ha='center', va='top', transform=axes[0,1].transAxes, size='small') # axis coords
axes[0,1].text(0.25, 0.5, '\n'.join(bath_params),
ha='center', va='top', transform=axes[0,1].transAxes, size='small') # axis coords
axes[0,1].text(0.75, 0.375, '\n'.join(numeric_params),