-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcylinder.py
437 lines (359 loc) · 15.9 KB
/
cylinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import numpy as np
IS_PERSPECTIVE = True # 透视投影
VIEW = np.array([-0.8, 0.8, -0.8, 0.8, 1.0, 20.0]) # 视景体的left/right/bottom/top/near/far六个面
SCALE_K = np.array([1.0, 1.0, 1.0]) # 模型缩放比例
EYE = np.array([0.0, 0.0, 2.0]) # 眼睛的位置(默认z轴的正方向)
LOOK_AT = np.array([0.0, 0.0, 0.0]) # 瞄准方向的参考点(默认在坐标原点)
EYE_UP = np.array([0.0, 1.0, 0.0]) # 定义对观察者而言的上方(默认y轴的正方向)
WIN_W, WIN_H = 768, 768 # 保存窗口宽度和高度的变量
LEFT_IS_DOWNED = False # 鼠标左键被按下
MOUSE_X, MOUSE_Y = 0, 0 # 考察鼠标位移量时保存的起始位置
def getposture():
global EYE, LOOK_AT
dist = np.sqrt(np.power((EYE - LOOK_AT), 2).sum())
if dist > 0:
phi = np.arcsin((EYE[1] - LOOK_AT[1]) / dist)
theta = np.arcsin((EYE[0] - LOOK_AT[0]) / (dist * np.cos(phi)))
else:
phi = 0.0
theta = 0.0
return dist, phi, theta
DIST, PHI, THETA = getposture() # 眼睛与观察目标之间的距离、仰角、方位角
#画环
def drawAnnulus(radiusOut, hTop, hDown, XStart = -0.5, YStart = 0.4):
glBegin(GL_QUAD_STRIP)
angle_stepsize = 0.05
angle = 0.0
while (angle < 2 * np.pi):
x1 = radiusOut * np.cos(angle)
y1 = radiusOut * np.sin(angle)
glVertex3f(x1 + XStart, hTop, y1 + YStart)
glVertex3f(x1 + XStart, hDown, y1 + YStart)
angle = angle + angle_stepsize
glEnd()
#封盖子
def drawTopAnnulus(radiusOut=0.3, radiusInner=0.1, hTop=0.6, XStart = -0.5, YStart = 0.4):
angle = 0.0
angle_stepsize = 0.05
while (angle < 2 * np.pi):
angle1 = angle + angle_stepsize
glBegin(GL_QUAD_STRIP)
x = radiusOut * np.cos(angle)
y = radiusOut * np.sin(angle)
glVertex3f(x + XStart, hTop, y + YStart)
x = radiusOut * np.cos(angle1)
y = radiusOut * np.sin(angle1)
glVertex3f(x + XStart, hTop, y + YStart)
x1 = radiusInner * np.cos(angle)
y1 = radiusInner * np.sin(angle)
glVertex3f(x1 + XStart, hTop, y1 + YStart)
x1 = radiusInner * np.cos(angle1)
y1 = radiusInner * np.sin(angle1)
glVertex3f(x1 + XStart, hTop, y1 + YStart)
x = radiusOut * np.cos(angle)
y = radiusOut * np.sin(angle)
glVertex3f(x + XStart, hTop, y + YStart)
angle = angle1
glEnd()
#定义环柱
def cylinder(AnnulusStartX = 0, AnnulusStartY = 0, hTop = 0.1, hDown = 0, radiusOut = 0.3, radiusInner = 0.05):
# 圆环柱起始位置
# 圆环柱高度
# 半径
# 定义jade材质
# materiaJade()
# 外环
drawAnnulus(radiusOut=radiusOut, hTop=hTop, hDown=hDown, XStart=AnnulusStartX, YStart=AnnulusStartY)
# 内环
drawAnnulus(radiusOut=radiusInner, hTop=hTop, hDown=hDown, XStart=AnnulusStartX, YStart=AnnulusStartY)
# 定义绿色材质
# materiaGreen()
# 盖子
drawTopAnnulus(radiusOut=radiusOut, radiusInner=radiusInner, hTop=hTop, XStart=AnnulusStartX, YStart=AnnulusStartY)
# 盖子
drawTopAnnulus(radiusOut=radiusOut, radiusInner=radiusInner, hTop=hDown, XStart=AnnulusStartX, YStart=AnnulusStartY)
# light
def light():
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE)
light_position = [0, 0.8, 0, 1]
light_ambient = [0.1, 0.1, 0.1, 1]
light_diffuse = [0.2, 0.2, 0.2, 1]
light_specular = [0.3, 0.3, 0.3, 1]
glLightfv(GL_LIGHT0, GL_POSITION, light_position)
#glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, [0, -1, -1])
glLightfv(GL_LIGHT0, GL_SPOT_EXPONENT, 0)
#glLightfv(GL_LIGHT0, GL_SPOT_CUTOFF, 180)
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient) # 表示该光源所发出的光,经过非常多次的反射后,最终遗留在整个光照环境中的强度
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse) # 表示该光源所发出的光,照射到粗糙表面时经过漫反射,所得到的光的强度
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular) # 表示该光源所发出的光,照射到光滑表面时经过镜面反射,所得到的光的强度
light_position = [1, 1, 0, 1]
light_ambient = [0.2, 0.2, 0.2, 1]
light_diffuse = [0.2, 0.2, 0.2, 1]
light_specular = [0.3, 0.3, 0.3, 1]
glLightfv(GL_LIGHT1, GL_POSITION, light_position)
glLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient) # 表示该光源所发出的光,经过非常多次的反射后,最终遗留在整个光照环境中的强度
glLightfv(GL_LIGHT1, GL_DIFFUSE, light_diffuse) # 表示该光源所发出的光,照射到粗糙表面时经过漫反射,所得到的光的强度
glLightfv(GL_LIGHT1, GL_SPECULAR, light_specular) # 表示该光源所发出的光,照射到光滑表面时经过镜面反射,所得到的光的强度
light_position = [-1, 1, 0, 1]
light_ambient = [0.2, 0.2, 0.2, 1]
light_diffuse = [0.2, 0.2, 0.2, 1]
light_specular = [0.3, 0.3, 0.3, 1]
glLightfv(GL_LIGHT2, GL_POSITION, light_position)
glLightfv(GL_LIGHT2, GL_AMBIENT, light_ambient) # 表示该光源所发出的光,经过非常多次的反射后,最终遗留在整个光照环境中的强度
glLightfv(GL_LIGHT2, GL_DIFFUSE, light_ambient) # 表示该光源所发出的光,照射到粗糙表面时经过漫反射,所得到的光的强度
glLightfv(GL_LIGHT2, GL_SPECULAR, light_specular) # 表示该光源所发出的光,照射到光滑表面时经过镜面反射,所得到的光的强度
light_position = [0, 1, 1, 1]
light_ambient = [0.2, 0.2, 0.2, 1]
light_diffuse = [0.2, 0.2, 0.2, 1]
light_specular = [0.3, 0.3, 0.3, 1]
glLightfv(GL_LIGHT3, GL_POSITION, light_position)
glLightfv(GL_LIGHT3, GL_AMBIENT, light_ambient) # 表示该光源所发出的光,经过非常多次的反射后,最终遗留在整个光照环境中的强度
glLightfv(GL_LIGHT3, GL_DIFFUSE, light_ambient) # 表示该光源所发出的光,照射到粗糙表面时经过漫反射,所得到的光的强度
glLightfv(GL_LIGHT3, GL_SPECULAR, light_specular) # 表示该光源所发出的光,照射到光滑表面时经过镜面反射,所得到的光的强度
light_position = [0, 1, -1, 1]
light_ambient = [0.2, 0.2, 0.2, 1]
light_diffuse = [0.2, 0.2, 0.2, 1]
light_specular = [0.3, 0.3, 0.3, 1]
glLightfv(GL_LIGHT4, GL_POSITION, light_position)
glLightfv(GL_LIGHT4, GL_AMBIENT, light_ambient) # 表示该光源所发出的光,经过非常多次的反射后,最终遗留在整个光照环境中的强度
glLightfv(GL_LIGHT4, GL_DIFFUSE, light_ambient) # 表示该光源所发出的光,照射到粗糙表面时经过漫反射,所得到的光的强度
glLightfv(GL_LIGHT4, GL_SPECULAR, light_specular) # 表示该光源所发出的光,照射到光滑表面时经过镜面反射,所得到的光的强度
glEnable(GL_LIGHT0)
glEnable(GL_LIGHT1)
glEnable(GL_LIGHT2)
#glEnable(GL_LIGHT3)
#glEnable(GL_LIGHT4)
glEnable(GL_LIGHTING)
# 定义绿色材质
def materiaGreen():
earth_mat_ambient = [0.0215, 0.1745, 0.0215, 1]
earth_mat_diffuse = [0.07569, 0.6142, 0.07568, 1]
earth_mat_specular = [0.633, 0.7278, 0.633, 1]
earth_mat_shininess = 128*0.6
glMaterialfv(GL_FRONT, GL_AMBIENT, earth_mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, earth_mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, earth_mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, earth_mat_shininess);
# 定义jade材质
def materiaJade():
earth_mat_ambient = [0.135, 0.2225, 0.1575, 1]
earth_mat_diffuse = [0.54, 0.89, 0.63, 1]
earth_mat_specular = [0.31623, 0.31623, 0.31623, 1]
earth_mat_shininess = 128*0.1
glMaterialfv(GL_FRONT, GL_AMBIENT, earth_mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, earth_mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, earth_mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, earth_mat_shininess);
# 定义黑材质
def materiaBlackRubber():
earth_mat_ambient = [0.02, 0.02, 0.02, 1]
earth_mat_diffuse = [0.01, 0.01, 0.01, 1]
earth_mat_specular = [0.04, 0.04, 0.04, 1]
earth_mat_shininess = 128*0.25
glMaterialfv(GL_FRONT, GL_AMBIENT, earth_mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, earth_mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, earth_mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, earth_mat_shininess);
def materiaWhitePlastic():
earth_mat_ambient = [0, 0, 0, 1]
earth_mat_diffuse = [0.55, 0.55, 0.55, 1]
earth_mat_specular = [0.7, 0.7, 0.7, 1]
earth_mat_shininess = 128*0.25
glMaterialfv(GL_FRONT, GL_AMBIENT, earth_mat_ambient);
glMaterialfv(GL_FRONT, GL_DIFFUSE, earth_mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, earth_mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, earth_mat_shininess);
def materiaBlackRubber():
earth_mat_ambient = [0.02, 0.02, 0.02, 1]
earth_mat_diffuse = [0.01, 0.01, 0.01, 1]
earth_mat_specular = [0.4, 0.4, 0.4, 1]
earth_mat_shininess = 10
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, earth_mat_ambient);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, earth_mat_diffuse);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, earth_mat_specular);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, earth_mat_shininess);
def materiaIron():
mat_Ambient = [0.15, 0.15, 0.15, 1]
mat_diffuse = [0.3, 0.3, 0.3, 1]
mat_specular = [0.6, 0.6, 0.6, 1] # 镜面反射参数
mat_specular = [0.8, 0.8, 0.8, 1] # 镜面反射参数
mat_diffuse = [0.8, 0.8, 0.8, 1]
mat_shiniess = [15] # 高光指数
mat_specular = [0.7, 0.7, 0.7, 1.0] # 镜面反射参数
mat_Ambient = [0.05, 0.05, 0.05, 1.0]
mat_diffuse = [0.5, 0.5, 0.5, 1.0]
mat_shiniess = [10] # 高光指数
# mat_emission = [0.2, 0.2, 0.2]
# 材质属性
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, mat_Ambient)
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse)
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular)
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shiniess)
def materiaIron1():
mat_Ambient = [0.15, 0.15, 0.15, 1]
mat_diffuse = [0.3, 0.3, 0.3, 1]
mat_specular = [0.6, 0.6, 0.6, 1] # 镜面反射参数
mat_shiniess = [15] # 高光指数
# 材质属性
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, mat_Ambient)
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, mat_diffuse)
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, mat_specular)
glMaterialfv(GL_FRONT_AND_BACK, GL_SHININESS, mat_shiniess)
#GLU画法
def newDraw():
DENSITY = 128
materiaIron1()
# create quadric
quadratic = gluNewQuadric()
glTranslatef(0, 0.5, 0) # 移动绘图原点到光源处
# draw lower part of cylinder
glRotatef(90, 1.0, 0.0, 0.0)
#glTranslatef(0.0, 0.3, 0)
gluDisk(quadratic, 0.05, 0.3, DENSITY, DENSITY)
gluCylinder(quadratic, 0.3, 0.3, 0.1, DENSITY, DENSITY)
gluCylinder(quadratic, 0.05, 0.05, 0.1, DENSITY, DENSITY)
glTranslatef(0.0, 0, 0.1)
gluDisk(quadratic, 0.05, 0.3, DENSITY, DENSITY)
# draw middle part of cylinder
gluCylinder(quadratic, 0.1, 0.1, 0.9, DENSITY, DENSITY)
gluCylinder(quadratic, 0.05, 0.05, 0.9, DENSITY, DENSITY)
# uper
glTranslatef(0.0, 0, 0.9)
gluDisk(quadratic, 0.05, 0.3, DENSITY, DENSITY)
gluCylinder(quadratic, 0.3, 0.3, 0.1, DENSITY, DENSITY)
gluCylinder(quadratic, 0.05, 0.05, 0.1, DENSITY, DENSITY)
glTranslatef(0.0, 0, 0.1)
gluDisk(quadratic, 0.05, 0.3, DENSITY, DENSITY)
#glutSolidSphere(0.05, 50, 50) # 绘制球
#画图函数
def display():
#开启深度测试
glClearColor(0.0, 0.0, 0.0, 1.0) # 设置画布背景色。注意:这里必须是4个参数
glEnable(GL_DEPTH_TEST) # 开启深度测试,实现遮挡关系
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glDepthFunc(GL_LEQUAL)
# 设置投影(透视投影)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glFrustum(VIEW[0], VIEW[1], VIEW[2] * WIN_H / WIN_W, VIEW[3] * WIN_H / WIN_W, VIEW[4], VIEW[5])
# 设置模型视图
glMatrixMode(GL_MODELVIEW)
glLoadIdentity()
# 几何变换
glScale(SCALE_K[0], SCALE_K[1], SCALE_K[2])
# 设置视点
gluLookAt(
EYE[0], EYE[1], EYE[2],
LOOK_AT[0], LOOK_AT[1], LOOK_AT[2],
EYE_UP[0], EYE_UP[1], EYE_UP[2]
)
# 设置视口
glViewport(0, 0, WIN_W, WIN_H)
# 打光
light()
# 定义绿色材质
materiaIron()
#定义环柱
#cylinder(AnnulusStartX=0, AnnulusStartY=0, hTop=0.4, hDown=0.3, radiusOut=0.3, radiusInner=0.05)
#cylinder(AnnulusStartX=0, AnnulusStartY=0, hTop=0.3, hDown=-0.3, radiusOut=0.1, radiusInner=0.05)
#cylinder(AnnulusStartX=0, AnnulusStartY=0, hTop=-0.3, hDown=-0.4, radiusOut=0.3, radiusInner=0.05)
#glutSolidSphere(0.3, 100, 100) #球
# GLU画法
newDraw()
#旋转
# glTranslatef(0.3, -0.3, 0)
#glRotatef(-20, 1.0, 0.0, 0.0)
#glFlush()
# ---------------------------------------------------------------
glutSwapBuffers() # 切换缓冲区,以显示绘制内容
def reshape(width, height):
global WIN_W, WIN_H
WIN_W, WIN_H = width, height
glutPostRedisplay()
def mouseclick(button, state, x, y):
global SCALE_K
global LEFT_IS_DOWNED
global MOUSE_X, MOUSE_Y
MOUSE_X, MOUSE_Y = x, y
if button == GLUT_LEFT_BUTTON:
LEFT_IS_DOWNED = state == GLUT_DOWN
elif button == 3:
SCALE_K *= 1.05
glutPostRedisplay()
elif button == 4:
SCALE_K *= 0.95
glutPostRedisplay()
def mousemotion(x, y):
global LEFT_IS_DOWNED
global EYE, EYE_UP
global MOUSE_X, MOUSE_Y
global DIST, PHI, THETA
global WIN_W, WIN_H
if LEFT_IS_DOWNED:
dx = MOUSE_X - x
dy = y - MOUSE_Y
MOUSE_X, MOUSE_Y = x, y
PHI += 2 * np.pi * dy / WIN_H
PHI %= 2 * np.pi
THETA += 2 * np.pi * dx / WIN_W
THETA %= 2 * np.pi
r = DIST * np.cos(PHI)
EYE[1] = DIST * np.sin(PHI)
EYE[0] = r * np.sin(THETA)
EYE[2] = r * np.cos(THETA)
if 0.5 * np.pi < PHI < 1.5 * np.pi:
EYE_UP[1] = -1.0
else:
EYE_UP[1] = 1.0
glutPostRedisplay()
def keydown(key, x, y):
global DIST, PHI, THETA
global EYE, LOOK_AT, EYE_UP
global IS_PERSPECTIVE, VIEW
if key in [b'x', b'X', b'y', b'Y', b'z', b'Z']:
if key == b'x': # 瞄准参考点 x 减小
LOOK_AT[0] -= 0.01
elif key == b'X': # 瞄准参考 x 增大
LOOK_AT[0] += 0.01
elif key == b'y': # 瞄准参考点 y 减小
LOOK_AT[1] -= 0.01
elif key == b'Y': # 瞄准参考点 y 增大
LOOK_AT[1] += 0.01
elif key == b'z': # 瞄准参考点 z 减小
LOOK_AT[2] -= 0.01
elif key == b'Z': # 瞄准参考点 z 增大
LOOK_AT[2] += 0.01
DIST, PHI, THETA = getposture()
glutPostRedisplay()
elif key == b'\r': # 回车键,视点前进
EYE = LOOK_AT + (EYE - LOOK_AT) * 0.9
DIST, PHI, THETA = getposture()
glutPostRedisplay()
elif key == b'\x08': # 退格键,视点后退
EYE = LOOK_AT + (EYE - LOOK_AT) * 1.1
DIST, PHI, THETA = getposture()
glutPostRedisplay()
# main
if __name__ =='__main__':
glutInit()
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)
glutInitWindowPosition(100, 100)
glutInitWindowSize(WIN_W, WIN_H)
glutCreateWindow("Create Cylinder")
glClearColor(0.0, 0.0, 0.0, 0.0)
glutDisplayFunc(display)
glutReshapeFunc(reshape) # 注册响应窗口改变的函数reshape()
glutMouseFunc(mouseclick) # 注册响应鼠标点击的函数mouseclick()
glutMotionFunc(mousemotion) # 注册响应鼠标拖拽的函数mousemotion()
glutKeyboardFunc(keydown) # 注册键盘输入的函数keydown()
glutMainLoop()
#画圆形
# glBegin(GL_POLYGON)
# R = 0.5
# N = 100
# for i in range(N):
# glVertex2f(R * np.cos(2 * np.pi / N * i), R * np.sin(2 * np.pi / N * i), 0);
# glEnd()