-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
executable file
·181 lines (181 loc) · 6.37 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# from __future__ import print_function
# import os
# import json
# import cPickle
# import numpy as np
# import utils
# import h5py
# import torch
# from torch.utils.data import Dataset
#
#
# class Dictionary(object):
# def __init__(self, word2idx=None, idx2word=None):
# if word2idx is None:
# word2idx = {}
# if idx2word is None:
# idx2word = []
# self.word2idx = word2idx
# self.idx2word = idx2word
#
# @property
# def ntoken(self):
# return len(self.word2idx)
#
# @property
# def padding_idx(self):
# return len(self.word2idx)
#
# def tokenize(self, sentence, add_word):
# sentence = sentence.lower()
# sentence = sentence.replace(',', '').replace('?', '').replace('\'s', ' \'s')
# words = sentence.split()
# tokens = []
# if add_word:
# for w in words:
# tokens.append(self.add_word(w))
# else:
# for w in words:
# tokens.append(self.word2idx[w])
# return tokens
#
# def dump_to_file(self, path):
# cPickle.dump([self.word2idx, self.idx2word], open(path, 'wb'))
# print('dictionary dumped to %s' % path)
#
# @classmethod
# def load_from_file(cls, path):
# print('loading dictionary from %s' % path)
# word2idx, idx2word = cPickle.load(open(path, 'rb'))
# d = cls(word2idx, idx2word)
# return d
#
# def add_word(self, word):
# if word not in self.word2idx:
# self.idx2word.append(word)
# self.word2idx[word] = len(self.idx2word) - 1
# return self.word2idx[word]
#
# def __len__(self):
# return len(self.idx2word)
#
#
# def _create_entry(img, question, answer):
# answer.pop('image_id')
# answer.pop('question_id')
# entry = {
# 'question_id' : question['question_id'],
# 'image_id' : question['image_id'],
# 'image' : img,
# 'question' : question['question'],
# 'answer' : answer}
# return entry
#
#
# def _load_dataset(dataroot, name, img_id2val):
# """Load entries
#
# img_id2val: dict {img_id -> val} val can be used to retrieve image or features
# dataroot: root path of dataset
# name: 'train', 'val'
# """
# question_path = os.path.join(
# dataroot, 'v2_OpenEnded_mscoco_%s2014_questions.json' % name)
# questions = sorted(json.load(open(question_path))['questions'],
# key=lambda x: x['question_id'])
# answer_path = os.path.join(dataroot, 'cache', '%s_target.pkl' % name)
# answers = cPickle.load(open(answer_path, 'rb'))
# answers = sorted(answers, key=lambda x: x['question_id'])
#
# utils.assert_eq(len(questions), len(answers))
# entries = []
# for question, answer in zip(questions, answers):
# utils.assert_eq(question['question_id'], answer['question_id'])
# utils.assert_eq(question['image_id'], answer['image_id'])
# img_id = question['image_id']
# entries.append(_create_entry(img_id2val[img_id], question, answer))
#
# return entries
#
#
# class VQAFeatureDataset(Dataset):
# def __init__(self, name, dictionary, dataroot='data'):
# super(VQAFeatureDataset, self).__init__()
# assert name in ['train', 'val']
#
# ans2label_path = os.path.join(dataroot, 'cache', 'trainval_ans2label.pkl')
# label2ans_path = os.path.join(dataroot, 'cache', 'trainval_label2ans.pkl')
# self.ans2label = cPickle.load(open(ans2label_path, 'rb'))
# self.label2ans = cPickle.load(open(label2ans_path, 'rb'))
# self.num_ans_candidates = len(self.ans2label)
#
# self.dictionary = dictionary
#
# self.img_id2idx = cPickle.load(
# open(os.path.join(dataroot, '%s36_imgid2idx.pkl' % name)))
# print('loading features from h5 file')
# h5_path = os.path.join(dataroot, '%s36.hdf5' % name)
# with h5py.File(h5_path, 'r') as hf:
# self.features = np.array(hf.get('image_features'))
# self.spatials = np.array(hf.get('spatial_features'))
#
# self.entries = _load_dataset(dataroot, name, self.img_id2idx)
#
# self.tokenize()
# self.tensorize()
# self.v_dim = self.features.size(2)
# self.s_dim = self.spatials.size(2)
#
# def tokenize(self, max_length=14):
# """Tokenizes the questions.
#
# This will add q_token in each entry of the dataset.
# -1 represent nil, and should be treated as padding_idx in embedding
# """
# for entry in self.entries:
# tokens = self.dictionary.tokenize(entry['question'], False)
# tokens = tokens[:max_length]
# if len(tokens) < max_length:
# # Note here we pad in front of the sentence
# padding = [self.dictionary.padding_idx] * (max_length - len(tokens))
# tokens = padding + tokens
# utils.assert_eq(len(tokens), max_length)
# entry['q_token'] = tokens
#
# def tensorize(self):
# self.features = torch.from_numpy(self.features)
# self.spatials = torch.from_numpy(self.spatials)
#
# for entry in self.entries:
# question = torch.from_numpy(np.array(entry['q_token']))
# entry['q_token'] = question
#
# answer = entry['answer']
# labels = np.array(answer['labels'])
# scores = np.array(answer['scores'], dtype=np.float32)
# if len(labels):
# labels = torch.from_numpy(labels)
# scores = torch.from_numpy(scores)
# entry['answer']['labels'] = labels
# entry['answer']['scores'] = scores
# else:
# entry['answer']['labels'] = None
# entry['answer']['scores'] = None
#
# def __getitem__(self, index):
# entry = self.entries[index]
# features = self.features[entry['image']]
# spatials = self.spatials[entry['image']]
#
# question = entry['q_token']
# answer = entry['answer']
# labels = answer['labels']
# scores = answer['scores']
# target = torch.zeros(self.num_ans_candidates)
# if labels is not None:
# target.scatter_(0, labels, scores)
#
# return features, spatials, question, target
#
# def __len__(self):
# return len(self.entries)