|
| 1 | +from math import * |
| 2 | +import sys |
| 3 | +import Crypto.Util.number |
| 4 | + |
| 5 | +def sat_inequiv_alpha(p, t, R_F, R_P, alpha, M): |
| 6 | + n = ceil(log(p, 2)) |
| 7 | + N = int(n * t) |
| 8 | + if alpha > 0: |
| 9 | + R_F_1 = 6 if M <= ((floor(log(p, 2) - ((alpha-1)/2.0))) * (t + 1)) else 10 # Statistical |
| 10 | + R_F_2 = 1 + ceil(log(2, alpha) * min(M, n)) + ceil(log(t, alpha)) - R_P # Interpolation |
| 11 | + #R_F_3 = ceil(min(n, M) / float(3*log(alpha, 2))) - R_P # Groebner 1 |
| 12 | + #R_F_3 = ((log(2, alpha) / float(2)) * min(n, M)) - R_P # Groebner 1 |
| 13 | + R_F_3 = 1 + (log(2, alpha) * min(M/float(3), log(p, 2)/float(2))) - R_P # Groebner 1 |
| 14 | + R_F_4 = t - 1 + min((log(2, alpha) * M) / float(t+1), ((log(2, alpha)*log(p, 2)) / float(2))) - R_P # Groebner 2 |
| 15 | + #R_F_5 = ((1.0/(2*log((alpha**alpha)/float((alpha-1)**(alpha-1)), 2))) * min(n, M) + t - 2 - R_P) / float(t - 1) # Groebner 3 |
| 16 | + R_F_max = max(ceil(R_F_1), ceil(R_F_2), ceil(R_F_3), ceil(R_F_4)) |
| 17 | + return (R_F >= R_F_max) |
| 18 | + elif alpha == (-1): |
| 19 | + R_F_1 = 6 if M <= ((floor(log(p, 2) - 2)) * (t + 1)) else 10 # Statistical |
| 20 | + R_P_1 = 1 + ceil(0.5 * min(M, n)) + ceil(log(t, 2)) - floor(R_F * log(t, 2)) # Interpolation |
| 21 | + R_P_2 = 1 + ceil(0.5 * min(M, n)) + ceil(log(t, 2)) - floor(R_F * log(t, 2)) |
| 22 | + R_P_3 = t - 1 + ceil(log(t, 2)) + min(ceil(M / float(t+1)), ceil(0.5*log(p, 2))) - floor(R_F * log(t, 2)) # Groebner 2 |
| 23 | + R_F_max = ceil(R_F_1) |
| 24 | + R_P_max = max(ceil(R_P_1), ceil(R_P_2), ceil(R_P_3)) |
| 25 | + return (R_F >= R_F_max and R_P >= R_P_max) |
| 26 | + else: |
| 27 | + print("Invalid value for alpha!") |
| 28 | + exit(1) |
| 29 | + |
| 30 | +def get_sbox_cost(R_F, R_P, N, t): |
| 31 | + return int(t * R_F + R_P) |
| 32 | + |
| 33 | +def get_size_cost(R_F, R_P, N, t): |
| 34 | + n = ceil(float(N) / t) |
| 35 | + return int((N * R_F) + (n * R_P)) |
| 36 | + |
| 37 | +def get_depth_cost(R_F, R_P, N, t): |
| 38 | + return int(R_F + R_P) |
| 39 | + |
| 40 | +def find_FD_round_numbers(p, t, alpha, M, cost_function, security_margin): |
| 41 | + n = ceil(log(p, 2)) |
| 42 | + N = int(n * t) |
| 43 | + |
| 44 | + sat_inequiv = sat_inequiv_alpha |
| 45 | + |
| 46 | + R_P = 0 |
| 47 | + R_F = 0 |
| 48 | + min_cost = float("inf") |
| 49 | + max_cost_rf = 0 |
| 50 | + # Brute-force approach |
| 51 | + for R_P_t in range(1, 500): |
| 52 | + for R_F_t in range(4, 100): |
| 53 | + if R_F_t % 2 == 0: |
| 54 | + if (sat_inequiv(p, t, R_F_t, R_P_t, alpha, M) == True): |
| 55 | + if security_margin == True: |
| 56 | + R_F_t += 2 |
| 57 | + R_P_t = int(ceil(float(R_P_t) * 1.075)) |
| 58 | + cost = cost_function(R_F_t, R_P_t, N, t) |
| 59 | + if (cost < min_cost) or ((cost == min_cost) and (R_F_t < max_cost_rf)): |
| 60 | + R_P = ceil(R_P_t) |
| 61 | + R_F = ceil(R_F_t) |
| 62 | + min_cost = cost |
| 63 | + max_cost_rf = R_F |
| 64 | + return (int(R_F), int(R_P)) |
| 65 | + |
| 66 | +def calc_final_numbers_fixed(p, t, alpha, M, security_margin): |
| 67 | + # [Min. S-boxes] Find best possible for t and N |
| 68 | + n = ceil(log(p, 2)) |
| 69 | + N = int(n * t) |
| 70 | + cost_function = get_sbox_cost |
| 71 | + ret_list = [] |
| 72 | + (R_F, R_P) = find_FD_round_numbers(p, t, alpha, M, cost_function, security_margin) |
| 73 | + min_sbox_cost = cost_function(R_F, R_P, N, t) |
| 74 | + ret_list.append(R_F) |
| 75 | + ret_list.append(R_P) |
| 76 | + ret_list.append(min_sbox_cost) |
| 77 | + |
| 78 | + # [Min. Size] Find best possible for t and N |
| 79 | + # Minimum number of S-boxes for fixed n results in minimum size also (round numbers are the same)! |
| 80 | + min_size_cost = get_size_cost(R_F, R_P, N, t) |
| 81 | + ret_list.append(min_size_cost) |
| 82 | + |
| 83 | + return ret_list # [R_F, R_P, min_sbox_cost, min_size_cost] |
| 84 | + |
| 85 | +def print_latex_table_combinations(combinations, alpha, security_margin): |
| 86 | + for comb in combinations: |
| 87 | + N = comb[0] |
| 88 | + t = comb[1] |
| 89 | + M = comb[2] |
| 90 | + n = int(N / t) |
| 91 | + prime = Crypto.Util.number.getPrime(n) |
| 92 | + ret = calc_final_numbers_fixed(prime, t, alpha, M, security_margin) |
| 93 | + field_string = "\mathbb F_{p}" |
| 94 | + sbox_string = "x^{" + str(alpha) + "}" |
| 95 | + print("$" + str(M) + "$ & $" + str(N) + "$ & $" + str(n) + "$ & $" + str(t) + "$ & $" + str(ret[0]) + "$ & $" + str(ret[1]) + "$ & $" + field_string + "$ & $" + str(ret[2]) + "$ & $" + str(ret[3]) + "$ \\\\") |
| 96 | + |
| 97 | +# Single tests |
| 98 | +# print calc_final_numbers_fixed(Crypto.Util.number.getPrime(64), 24, 3, 128, True) |
| 99 | +# print calc_final_numbers_fixed(Crypto.Util.number.getPrime(253), 6, -1, 128, True) |
| 100 | +print(calc_final_numbers_fixed(Crypto.Util.number.getPrime(255), 3, 5, 128, True)) |
| 101 | +print(calc_final_numbers_fixed(Crypto.Util.number.getPrime(255), 6, 5, 128, True)) |
| 102 | +print(calc_final_numbers_fixed(Crypto.Util.number.getPrime(254), 3, 5, 128, True)) |
| 103 | +print(calc_final_numbers_fixed(Crypto.Util.number.getPrime(254), 6, 5, 128, True)) |
| 104 | +print(calc_final_numbers_fixed(Crypto.Util.number.getPrime(64), 24, 3, 128, True)) |
| 105 | + |
| 106 | +# x^5 (254-bit prime number) |
| 107 | +#prime = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001 |
| 108 | +x_5_combinations = [ |
| 109 | + [1536, 2, 128], [1536, 4, 128], [1536, 6, 128], [1536, 8, 128], [1536, 16, 128], |
| 110 | + [1536, 2, 256], [1536, 4, 256], [1536, 6, 256], [1536, 8, 256], [1536, 16, 256] |
| 111 | +] |
| 112 | + |
| 113 | +# With security margin |
| 114 | +print("--- Table x^5 WITH security margin ---") |
| 115 | +print_latex_table_combinations(x_5_combinations, 5, True) |
| 116 | + |
| 117 | +# Without security margin |
| 118 | +print("--- Table x^5 WITHOUT security margin ---") |
| 119 | +print_latex_table_combinations(x_5_combinations, 5, False) |
| 120 | + |
| 121 | +x_3_combinations = [ |
| 122 | + [1536, 2, 128], [1536, 4, 128], [1536, 6, 128], [1536, 8, 128], [1536, 16, 128], |
| 123 | + [1536, 2, 256], [1536, 4, 256], [1536, 6, 256], [1536, 8, 256], [1536, 16, 256] |
| 124 | +] |
| 125 | + |
| 126 | +# With security margin |
| 127 | +print("--- Table x^3 WITH security margin ---") |
| 128 | +print_latex_table_combinations(x_3_combinations, 3, True) |
| 129 | + |
| 130 | +# Without security margin |
| 131 | +print("--- Table x^3 WITHOUT security margin ---") |
| 132 | +print_latex_table_combinations(x_3_combinations, 3, False) |
| 133 | + |
| 134 | +x_inv_combinations = [ |
| 135 | + [1536, 2, 128], [1536, 4, 128], [1536, 6, 128], [1536, 8, 128], [1536, 16, 128], |
| 136 | + [1536, 2, 256], [1536, 4, 256], [1536, 6, 256], [1536, 8, 256], [1536, 16, 256] |
| 137 | +] |
| 138 | + |
| 139 | +# With security margin |
| 140 | +print("--- Table x^(-1) WITH security margin ---") |
| 141 | +print_latex_table_combinations(x_inv_combinations, -1, True) |
| 142 | + |
| 143 | +# Without security margin |
| 144 | +print("--- Table x^(-1) WITHOUT security margin ---") |
| 145 | +print_latex_table_combinations(x_inv_combinations, -1, False) |
0 commit comments