-
Notifications
You must be signed in to change notification settings - Fork 115
/
Copy pathevaluate.py
90 lines (72 loc) · 3.05 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
# This driver performs 2-functions for the validation images specified in configuration file:
# 1) evaluate fscore of validation images.
# 2) stores the prediction results of the validation images.
import argparse
import json
import cv2
import numpy as np
from yolo.frontend import create_yolo
from yolo.backend.utils.box import draw_scaled_boxes
from yolo.backend.utils.annotation import parse_annotation
from yolo.backend.utils.eval.fscore import count_true_positives, calc_score
import os
import yolo
DEFAULT_CONFIG_FILE = os.path.join(yolo.PROJECT_ROOT, "svhn", "config.json")
DEFAULT_WEIGHT_FILE = os.path.join(yolo.PROJECT_ROOT, "svhn", "weights.h5")
DEFAULT_THRESHOLD = 0.3
argparser = argparse.ArgumentParser(
description='Predict digits driver')
argparser.add_argument(
'-c',
'--conf',
default=DEFAULT_CONFIG_FILE,
help='path to configuration file')
argparser.add_argument(
'-t',
'--threshold',
default=DEFAULT_THRESHOLD,
help='detection threshold')
argparser.add_argument(
'-w',
'--weights',
default=DEFAULT_WEIGHT_FILE,
help='trained weight files')
if __name__ == '__main__':
# 1. extract arguments
args = argparser.parse_args()
with open(args.conf) as config_buffer:
config = json.loads(config_buffer.read())
# 2. create yolo instance & predict
yolo = create_yolo(config['model']['architecture'],
config['model']['labels'],
config['model']['input_size'],
config['model']['anchors'])
yolo.load_weights(args.weights)
# 3. read image
write_dname = "detected"
if not os.path.exists(write_dname): os.makedirs(write_dname)
annotations = parse_annotation(config['train']['valid_annot_folder'],
config['train']['valid_image_folder'],
config['model']['labels'],
is_only_detect=config['train']['is_only_detect'])
n_true_positives = 0
n_truth = 0
n_pred = 0
for i in range(len(annotations)):
img_path = annotations.fname(i)
img_fname = os.path.basename(img_path)
image = cv2.imread(img_path)
true_boxes = annotations.boxes(i)
true_labels = annotations.code_labels(i)
boxes, probs = yolo.predict(image, float(args.threshold))
labels = np.argmax(probs, axis=1) if len(probs) > 0 else []
# 4. save detection result
image = draw_scaled_boxes(image, boxes, probs, config['model']['labels'])
output_path = os.path.join(write_dname, os.path.split(img_fname)[-1])
cv2.imwrite(output_path, image)
print("{}-boxes are detected. {} saved.".format(len(boxes), output_path))
n_true_positives += count_true_positives(boxes, true_boxes, labels, true_labels)
n_truth += len(true_boxes)
n_pred += len(boxes)
print(calc_score(n_true_positives, n_truth, n_pred))