Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Cast Recursive Argument Constructor Arguments when necessary #28

Open
pedrotst opened this issue Apr 9, 2020 · 1 comment
Open

Cast Recursive Argument Constructor Arguments when necessary #28

pedrotst opened this issue Apr 9, 2020 · 1 comment

Comments

@pedrotst
Copy link
Owner

pedrotst commented Apr 9, 2020

Consider le_ind, it is currently translated this way:

le_ind : Π n : nat . ∀ P : nat ➔ ★ . Π f : P n . Π f' : Π m : nat . le n m ➔ P m ➔ P (S m) . Π n' : nat . Π l : le n n' . P n'
= λ n : nat . Λ P : nat ➔ ★ . λ f : P n . λ f' : Π m : nat . le n m ➔ P m ➔ P (S m) . λ n' : nat . λ l : le n n' .
μ F. l @(λ n' : nat . λ l : le n n' . P n') {
  | le_n ➔ f 
  | le_S m l' ➔ f' m l' (F -m l')
 }.

But the correct translation would be with the following cast using to/le

le_ind : Π n : nat . ∀ P : nat ➔ ★ . Π f : P n . Π f' : Π m : nat . le n m ➔ P m ➔ P (S m) . Π n' : nat . Π l : le n n' . P n'
= λ n : nat . Λ P : nat ➔ ★ . λ f : P n . λ f' : Π m : nat . le n m ➔ P m ➔ P (S m) . λ n' : nat . λ l : le n n' .
μ F. l @(λ n' : nat . λ l : le n n' . P n') {
  | le_n ➔ f 
  | le_S m l' ➔ f' m (to/le n -(isType/F) -m l') (F -m l')
 }.
@pedrotst
Copy link
Owner Author

pedrotst commented Apr 17, 2020

We will deal with this by hard coding the necessary induction principles for now. Apparently cedille folks will make this coercion implicit later on.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant