-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathsimulation.py
242 lines (186 loc) · 9.85 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from config import Configuration, config_error
from environment import build_hospital
from infection import find_nearby, infect, recover_or_die, compute_mortality,\
healthcare_infection_correction
from motion import update_positions, out_of_bounds, update_randoms,\
get_motion_parameters
from path_planning import go_to_location, set_destination, check_at_destination,\
keep_at_destination, reset_destinations
from population import initialize_population, initialize_destination_matrix,\
set_destination_bounds, save_data, save_population, Population_trackers
from visualiser import build_fig, draw_tstep, set_style, plot_sir
#set seed for reproducibility
#np.random.seed(100)
# i'm supposed to make productive changes so this is going to be a
# productive comment. YAY!
class Simulation():
#TODO: if lockdown or otherwise stopped: destination -1 means no motion
def __init__(self, *args, **kwargs):
#load default config data
self.Config = Configuration(*args, **kwargs)
self.frame = 0
#initialize default population
self.population_init()
self.pop_tracker = Population_trackers()
#initalise destinations vector
self.destinations = initialize_destination_matrix(self.Config.pop_size, 1)
def reinitialise(self):
'''reset the simulation'''
self.frame = 0
self.population_init()
self.pop_tracker = Population_trackers()
self.destinations = initialize_destination_matrix(self.Config.pop_size, 1)
def population_init(self):
'''(re-)initializes population'''
self.population = initialize_population(self.Config, self.Config.mean_age,
self.Config.max_age, self.Config.xbounds,
self.Config.ybounds)
def tstep(self):
'''
takes a time step in the simulation
'''
if self.frame == 0 and self.Config.visualise:
#initialize figure
self.fig, self.spec, self.ax1, self.ax2 = build_fig(self.Config)
#check destinations if active
#define motion vectors if destinations active and not everybody is at destination
active_dests = len(self.population[self.population[:,11] != 0]) # look op this only once
if active_dests > 0 and len(self.population[self.population[:,12] == 0]) > 0:
self.population = set_destination(self.population, self.destinations)
self.population = check_at_destination(self.population, self.destinations,
wander_factor = self.Config.wander_factor_dest,
speed = self.Config.speed)
if active_dests > 0 and len(self.population[self.population[:,12] == 1]) > 0:
#keep them at destination
self.population = keep_at_destination(self.population, self.destinations,
self.Config.wander_factor)
#out of bounds
#define bounds arrays, excluding those who are marked as having a custom destination
if len(self.population[:,11] == 0) > 0:
_xbounds = np.array([[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]] * len(self.population[self.population[:,11] == 0]))
_ybounds = np.array([[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]] * len(self.population[self.population[:,11] == 0]))
self.population[self.population[:,11] == 0] = out_of_bounds(self.population[self.population[:,11] == 0],
_xbounds, _ybounds)
#set randoms
if self.Config.lockdown:
if len(self.pop_tracker.infectious) == 0:
mx = 0
else:
mx = np.max(self.pop_tracker.infectious)
if len(self.population[self.population[:,6] == 1]) >= len(self.population) * self.Config.lockdown_percentage or\
mx >= (len(self.population) * self.Config.lockdown_percentage):
#reduce speed of all members of society
self.population[:,5] = np.clip(self.population[:,5], a_min = None, a_max = 0.001)
#set speeds of complying people to 0
self.population[:,5][self.Config.lockdown_vector == 0] = 0
else:
#update randoms
self.population = update_randoms(self.population, self.Config.pop_size, self.Config.speed)
else:
#update randoms
self.population = update_randoms(self.population, self.Config.pop_size, self.Config.speed)
#for dead ones: set speed and heading to 0
self.population[:,3:5][self.population[:,6] == 3] = 0
#update positions
self.population = update_positions(self.population)
#find new infections
self.population, self.destinations = infect(self.population, self.Config, self.frame,
send_to_location = self.Config.self_isolate,
location_bounds = self.Config.isolation_bounds,
destinations = self.destinations,
location_no = 1,
location_odds = self.Config.self_isolate_proportion)
#recover and die
self.population = recover_or_die(self.population, self.frame, self.Config)
#send cured back to population if self isolation active
#perhaps put in recover or die class
#send cured back to population
self.population[:,11][self.population[:,6] == 2] = 0
#update population statistics
self.pop_tracker.update_counts(self.population)
#visualise
if self.Config.visualise:
draw_tstep(self.Config, self.population, self.pop_tracker, self.frame,
self.fig, self.spec, self.ax1, self.ax2)
#report stuff to console
sys.stdout.write('\r')
sys.stdout.write('%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \
dead: %i, of total: %i' %(self.frame, self.pop_tracker.susceptible[-1], self.pop_tracker.infectious[-1],
self.pop_tracker.recovered[-1], len(self.population[self.population[:,10] == 1]),
self.pop_tracker.fatalities[-1], self.Config.pop_size))
#save popdata if required
if self.Config.save_pop and (self.frame % self.Config.save_pop_freq) == 0:
save_population(self.population, self.frame, self.Config.save_pop_folder)
#run callback
self.callback()
#update frame
self.frame += 1
def callback(self):
'''placeholder function that can be overwritten.
By ovewriting this method any custom behaviour can be implemented.
The method is called after every simulation timestep.
'''
if self.frame == 50:
print('\ninfecting patient zero')
self.population[0][6] = 1
self.population[0][8] = 50
self.population[0][10] = 1
def run(self):
'''run simulation'''
i = 0
while i < self.Config.simulation_steps:
try:
self.tstep()
except KeyboardInterrupt:
print('\nCTRL-C caught, exiting')
sys.exit(1)
#check whether to end if no infecious persons remain.
#check if self.frame is above some threshold to prevent early breaking when simulation
#starts initially with no infections.
if self.Config.endif_no_infections and self.frame >= 500:
if len(self.population[(self.population[:,6] == 1) |
(self.population[:,6] == 4)]) == 0:
i = self.Config.simulation_steps
if self.Config.save_data:
save_data(self.population, self.pop_tracker)
#report outcomes
print('\n-----stopping-----\n')
print('total timesteps taken: %i' %self.frame)
print('total dead: %i' %len(self.population[self.population[:,6] == 3]))
print('total recovered: %i' %len(self.population[self.population[:,6] == 2]))
print('total infected: %i' %len(self.population[self.population[:,6] == 1]))
print('total infectious: %i' %len(self.population[(self.population[:,6] == 1) |
(self.population[:,6] == 4)]))
print('total unaffected: %i' %len(self.population[self.population[:,6] == 0]))
def plot_sir(self, size=(6,3), include_fatalities=False,
title='S-I-R plot of simulation'):
plot_sir(self.Config, self.pop_tracker, size, include_fatalities,
title)
if __name__ == '__main__':
#initialize
sim = Simulation()
#set number of simulation steps
sim.Config.simulation_steps = 20000
#set color mode
sim.Config.plot_style = 'default' #can also be dark
#set colorblind mode if needed
#sim.Config.colorblind_mode = True
#set colorblind type (default deuteranopia)
#sim.Config.colorblind_type = 'deuteranopia'
#set reduced interaction
#sim.Config.set_reduced_interaction()
#sim.population_init()
#set lockdown scenario
#sim.Config.set_lockdown(lockdown_percentage = 0.1, lockdown_compliance = 0.95)
#set self-isolation scenario
#sim.Config.set_self_isolation(self_isolate_proportion = 0.9,
# isolation_bounds = [0.02, 0.02, 0.09, 0.98],
# traveling_infects=False)
#sim.population_init() #reinitialize population to enforce new roaming bounds
#run, hold CTRL+C in terminal to end scenario early
sim.run()