-
Notifications
You must be signed in to change notification settings - Fork 79
/
population.py
237 lines (178 loc) · 7.94 KB
/
population.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
'''
this file contains functions that help initialize the population
parameters for the simulation
'''
from glob import glob
import os
import numpy as np
from motion import get_motion_parameters
from utils import check_folder
def initialize_population(Config, mean_age=45, max_age=105,
xbounds=[0, 1], ybounds=[0, 1]):
'''initialized the population for the simulation
the population matrix for this simulation has the following columns:
0 : unique ID
1 : current x coordinate
2 : current y coordinate
3 : current heading in x direction
4 : current heading in y direction
5 : current speed
6 : current state (0=healthy, 1=sick, 2=immune, 3=dead, 4=immune but infectious)
7 : age
8 : infected_since (frame the person got infected)
9 : recovery vector (used in determining when someone recovers or dies)
10 : in treatment
11 : active destination (0 = random wander, 1, .. = destination matrix index)
12 : at destination: whether arrived at destination (0=traveling, 1=arrived)
13 : wander_range_x : wander ranges on x axis for those who are confined to a location
14 : wander_range_y : wander ranges on y axis for those who are confined to a location
Keyword arguments
-----------------
pop_size : int
the size of the population
mean_age : int
the mean age of the population. Age affects mortality chances
max_age : int
the max age of the population
xbounds : 2d array
lower and upper bounds of x axis
ybounds : 2d array
lower and upper bounds of y axis
'''
#initialize population matrix
population = np.zeros((Config.pop_size, 15))
#initalize unique IDs
population[:,0] = [x for x in range(Config.pop_size)]
#initialize random coordinates
population[:,1] = np.random.uniform(low = xbounds[0] + 0.05, high = xbounds[1] - 0.05,
size = (Config.pop_size,))
population[:,2] = np.random.uniform(low = ybounds[0] + 0.05, high = ybounds[1] - 0.05,
size=(Config.pop_size,))
#initialize random headings -1 to 1
population[:,3] = np.random.normal(loc = 0, scale = 1/3,
size=(Config.pop_size,))
population[:,4] = np.random.normal(loc = 0, scale = 1/3,
size=(Config.pop_size,))
#initialize random speeds
population[:,5] = np.random.normal(Config.speed, Config.speed / 3)
#initalize ages
std_age = (max_age - mean_age) / 3
population[:,7] = np.int32(np.random.normal(loc = mean_age,
scale = std_age,
size=(Config.pop_size,)))
population[:,7] = np.clip(population[:,7], a_min = 0,
a_max = max_age) #clip those younger than 0 years
#build recovery_vector
population[:,9] = np.random.normal(loc = 0.5, scale = 0.5 / 3, size=(Config.pop_size,))
return population
def initialize_destination_matrix(pop_size, total_destinations):
'''intializes the destination matrix
function that initializes the destination matrix used to
define individual location and roam zones for population members
Keyword arguments
-----------------
pop_size : int
the size of the population
total_destinations : int
the number of destinations to maintain in the matrix. Set to more than
one if for example people can go to work, supermarket, home, etc.
'''
destinations = np.zeros((pop_size, total_destinations * 2))
return destinations
def set_destination_bounds(population, destinations, xmin, ymin,
xmax, ymax, dest_no=1, teleport=True):
'''teleports all persons within limits
Function that takes the population and coordinates,
teleports everyone there, sets destination active and
destination as reached
Keyword arguments
-----------------
population : ndarray
the array containing all the population information
destinations : ndarray
the array containing all the destination information
xmin, ymin, xmax, ymax : int or float
define the bounds on both axes where the individual can roam within
after reaching the defined area
dest_no : int
the destination number to set as active (if more than one)
teleport : bool
whether to instantly teleport individuals to the defined locations
'''
#teleport
if teleport:
population[:,1] = np.random.uniform(low = xmin, high = xmax, size = len(population))
population[:,2] = np.random.uniform(low = ymin, high = ymax, size = len(population))
#get parameters
x_center, y_center, x_wander, y_wander = get_motion_parameters(xmin, ymin,
xmax, ymax)
#set destination centers
destinations[:,(dest_no - 1) * 2] = x_center
destinations[:,((dest_no - 1) * 2) + 1] = y_center
#set wander bounds
population[:,13] = x_wander
population[:,14] = y_wander
population[:,11] = dest_no #set destination active
population[:,12] = 1 #set destination reached
return population, destinations
def save_data(population, pop_tracker):
'''dumps simulation data to disk
Function that dumps the simulation data to specific files on the disk.
Saves final state of the population matrix, the array of infected over time,
and the array of fatalities over time
Keyword arguments
-----------------
population : ndarray
the array containing all the population information
infected : list or ndarray
the array containing data of infections over time
fatalities : list or ndarray
the array containing data of fatalities over time
'''
num_files = len(glob('data/*'))
check_folder('data/%i' %num_files)
np.save('data/%i/population.npy' %num_files, population)
np.save('data/%i/infected.npy' %num_files, pop_tracker.infectious)
np.save('data/%i/recovered.npy' %num_files, pop_tracker.recovered)
np.save('data/%i/fatalities.npy' %num_files, pop_tracker.fatalities)
def save_population(population, tstep=0, folder='data_tstep'):
'''dumps population data at given timestep to disk
Function that dumps the simulation data to specific files on the disk.
Saves final state of the population matrix, the array of infected over time,
and the array of fatalities over time
Keyword arguments
-----------------
population : ndarray
the array containing all the population information
tstep : int
the timestep that will be saved
'''
check_folder('%s/' %(folder))
np.save('%s/population_%i.npy' %(folder, tstep), population)
class Population_trackers():
'''class used to track population parameters
Can track population parameters over time that can then be used
to compute statistics or to visualise.
TODO: track age cohorts here as well
'''
def __init__(self):
self.susceptible = []
self.infectious = []
self.recovered = []
self.fatalities = []
#PLACEHOLDER - whether recovered individual can be reinfected
self.reinfect = False
def update_counts(self, population):
'''docstring
'''
pop_size = population.shape[0]
self.infectious.append(len(population[population[:,6] == 1]))
self.recovered.append(len(population[population[:,6] == 2]))
self.fatalities.append(len(population[population[:,6] == 3]))
if self.reinfect:
self.susceptible.append(pop_size - (self.infectious[-1] +
self.fatalities[-1]))
else:
self.susceptible.append(pop_size - (self.infectious[-1] +
self.recovered[-1] +
self.fatalities[-1]))