-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathconfig.py
393 lines (319 loc) · 15.3 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
'''
file that contains all configuration related methods and classes
'''
import numpy as np
class config_error(Exception):
pass
class Configuration():
def __init__(self, *args, **kwargs):
#simulation variables
self.verbose = kwargs.get('verbose', True) #whether to print infections, recoveries and fatalities to the terminal
self.simulation_steps = kwargs.get('simulation_steps', 10000) #total simulation steps performed
self.tstep = kwargs.get('tstep', 0) #current simulation timestep
self.save_data = kwargs.get('save_data', False) #whether to dump data at end of simulation
self.save_pop = kwargs.get('save_pop', False) #whether to save population matrix every 'save_pop_freq' timesteps
self.save_pop_freq = kwargs.get('save_pop_freq', 10) #population data will be saved every 'n' timesteps. Default: 10
self.save_pop_folder = kwargs.get('save_pop_folder', 'pop_data/') #folder to write population timestep data to
self.endif_no_infections = kwargs.get('endif_no_infections', True) #whether to stop simulation if no infections remain
self.world_size = kwargs.get('world_size', [2, 2]) #x and y sizes of the world
#scenario flags
self.traveling_infects = kwargs.get('traveling_infects', False)
self.self_isolate = kwargs.get('self_isolate', False)
self.lockdown = kwargs.get('lockdown', False)
self.lockdown_percentage = kwargs.get('lockdown_percentage', 0.1) #after this proportion is infected, lock-down begins
self.lockdown_compliance = kwargs.get('lockdown_compliance', 0.95) #fraction of the population that will obey the lockdown
#visualisation variables
self.visualise = kwargs.get('visualise', True) #whether to visualise the simulation
self.plot_mode = kwargs.get('plot_mode', 'sir') #default or sir
#size of the simulated world in coordinates
self.x_plot = kwargs.get('x_plot', [0, self.world_size[0]])
self.y_plot = kwargs.get('y_plot', [0, self.world_size[1]])
self.save_plot = kwargs.get('save_plot', False)
self.plot_path = kwargs.get('plot_path', 'render/') #folder where plots are saved to
self.plot_style = kwargs.get('plot_style', 'default') #can be default, dark, ...
self.colorblind_mode = kwargs.get('colorblind_mode', False)
#if colorblind is enabled, set type of colorblindness
#available: deuteranopia, protanopia, tritanopia. defauld=deuteranopia
self.colorblind_type = kwargs.get('colorblind_type', 'deuteranopia')
#world variables, defines where population can and cannot roam
self.xbounds = kwargs.get('xbounds', [self.x_plot[0] + 0.02, self.x_plot[1] - 0.02])
self.ybounds = kwargs.get('ybounds', [self.y_plot[0] + 0.02, self.y_plot[1] - 0.02])
#population variables
self.pop_size = kwargs.get('pop_size', 2000)
self.mean_age = kwargs.get('mean_age', 45)
self.max_age = kwargs.get('max_age', 105)
self.age_dependent_risk = kwargs.get('age_dependent_risk', True) #whether risk increases with age
self.risk_age = kwargs.get('risk_age', 55) #age where mortality risk starts increasing
self.critical_age = kwargs.get('critical_age', 75) #age at and beyond which mortality risk reaches maximum
self.critical_mortality_chance = kwargs.get('critical_mortality_chance', 0.1) #maximum mortality risk for older age
self.risk_increase = kwargs.get('risk_increase', 'quadratic') #whether risk between risk and critical age increases 'linear' or 'quadratic'
#movement variables
#mean_speed = 0.01 # the mean speed (defined as heading * speed)
#std_speed = 0.01 / 3 #the standard deviation of the speed parameter
#the proportion of the population that practices social distancing, simulated
#by them standing still
self.proportion_distancing = kwargs.get('proportion_distancing', 0)
self.speed = kwargs.get('speed', 0.01) #average speed of population
#when people have an active destination, the wander range defines the area
#surrounding the destination they will wander upon arriving
self.wander_range = kwargs.get('wander_range', 0.05)
self.wander_factor = kwargs.get('wander_factor', 1)
self.wander_factor_dest = kwargs.get('wander_factor_dest', 1.5) #area around destination
#infection variables
self.infection_range = kwargs.get('infection_range', 0.01) #range surrounding sick patient that infections can take place
self.infection_chance = kwargs.get('infection_chance', 0.03) #chance that an infection spreads to nearby healthy people each tick
self.recovery_duration = kwargs.get('recovery_duration', (200, 500)) #how many ticks it may take to recover from the illness
self.mortality_chance = kwargs.get('mortality_chance', 0.02) #global baseline chance of dying from the disease
#healthcare variables
self.healthcare_capacity = kwargs.get('healthcare_capacity', 300) #capacity of the healthcare system
self.treatment_factor = kwargs.get('treatment_factor', 0.5) #when in treatment, affect risk by this factor
self.no_treatment_factor = kwargs.get('no_treatment_factor', 3) #risk increase factor to use if healthcare system is full
#risk parameters
self.treatment_dependent_risk = kwargs.get('treatment_dependent_risk', True) #whether risk is affected by treatment
#self isolation variables
self.self_isolate_proportion = kwargs.get('self_isolate_proportion', 0.6)
self.isolation_bounds = kwargs.get('isolation_bounds', [0.02, 0.02, 0.1, 0.98])
#lockdown variables
self.lockdown_percentage = kwargs.get('lockdown_percentage', 0.1)
self.lockdown_vector = kwargs.get('lockdown_vector', [])
def get_palette(self):
'''returns appropriate color palette
Uses config.plot_style to determine which palette to pick,
and changes palette to colorblind mode (config.colorblind_mode)
and colorblind type (config.colorblind_type) if required.
Palette colors are based on
https://venngage.com/blog/color-blind-friendly-palette/
'''
#palette colors are: [healthy, infected, immune, dead]
palettes = {'regular': {'default': ['gray', 'red', 'green', 'black'],
'dark': ['#404040', '#ff0000', '#00ff00', '#000000']},
'deuteranopia': {'default': ['gray', '#a50f15', '#08519c', 'black'],
'dark': ['#404040', '#fcae91', '#6baed6', '#000000']},
'protanopia': {'default': ['gray', '#a50f15', '08519c', 'black'],
'dark': ['#404040', '#fcae91', '#6baed6', '#000000']},
'tritanopia': {'default': ['gray', '#a50f15', '08519c', 'black'],
'dark': ['#404040', '#fcae91', '#6baed6', '#000000']}
}
if self.colorblind_mode:
return palettes[self.colorblind_type.lower()][self.plot_style]
else:
return palettes['regular'][self.plot_style]
def get(self, key):
'''gets key value from config'''
try:
return self.__dict__[key]
except:
raise config_error('key %s not present in config' %key)
def set(self, key, value):
'''sets key value in config'''
self.__dict__[key] = value
def read_from_file(self, path):
'''reads config from filename'''
#TODO: implement
pass
def set_lockdown(self, lockdown_percentage=0.1, lockdown_compliance=0.9):
'''sets lockdown to active'''
self.lockdown = True
#fraction of the population that will obey the lockdown
self.lockdown_percentage = lockdown_percentage
self.lockdown_vector = np.zeros((self.pop_size,))
#lockdown vector is 1 for those not complying
self.lockdown_vector[np.random.uniform(size=(self.pop_size,)) >= lockdown_compliance] = 1
def set_self_isolation(self, self_isolate_proportion=0.9,
isolation_bounds = [0.02, 0.02, 0.09, 0.98],
traveling_infects=False):
'''sets self-isolation scenario to active'''
self.self_isolate = True
self.isolation_bounds = isolation_bounds
self.self_isolate_proportion = self_isolate_proportion
#set roaming bounds to outside isolated area
self.xbounds = [0.1, 1.1]
self.ybounds = [0.02, 0.98]
#update plot bounds everything is shown
self.x_plot = [0, 1.1]
self.y_plot = [0, 1]
#update whether traveling agents also infect
self.traveling_infects = traveling_infects
def set_reduced_interaction(self, speed = 0.001):
'''sets reduced interaction scenario to active'''
self.speed = speed
def set_demo(self, destinations, population):
#make C
#first leg
destinations[:,0][0:100] = 0.05
destinations[:,1][0:100] = 0.7
population[:,13][0:100] = 0.01
population[:,14][0:100] = 0.05
#Top
destinations[:,0][100:200] = 0.1
destinations[:,1][100:200] = 0.75
population[:,13][100:200] = 0.05
population[:,14][100:200] = 0.01
#Bottom
destinations[:,0][200:300] = 0.1
destinations[:,1][200:300] = 0.65
population[:,13][200:300] = 0.05
population[:,14][200:300] = 0.01
#make O
#first leg
destinations[:,0][300:400] = 0.2
destinations[:,1][300:400] = 0.7
population[:,13][300:400] = 0.01
population[:,14][300:400] = 0.05
#Top
destinations[:,0][400:500] = 0.25
destinations[:,1][400:500] = 0.75
population[:,13][400:500] = 0.05
population[:,14][400:500] = 0.01
#Bottom
destinations[:,0][500:600] = 0.25
destinations[:,1][500:600] = 0.65
population[:,13][500:600] = 0.05
population[:,14][500:600] = 0.01
#second leg
destinations[:,0][600:700] = 0.3
destinations[:,1][600:700] = 0.7
population[:,13][600:700] = 0.01
population[:,14][600:700] = 0.05
#make V
#First leg
destinations[:,0][700:800] = 0.35
destinations[:,1][700:800] = 0.7
population[:,13][700:800] = 0.01
population[:,14][700:800] = 0.05
#Bottom
destinations[:,0][800:900] = 0.4
destinations[:,1][800:900] = 0.65
population[:,13][800:900] = 0.05
population[:,14][800:900] = 0.01
#second leg
destinations[:,0][900:1000] = 0.45
destinations[:,1][900:1000] = 0.7
population[:,13][900:1000] = 0.01
population[:,14][900:1000] = 0.05
#Make I
#leg
destinations[:,0][1000:1100] = 0.5
destinations[:,1][1000:1100] = 0.7
population[:,13][1000:1100] = 0.01
population[:,14][1000:1100] = 0.05
#I dot
destinations[:,0][1100:1200] = 0.5
destinations[:,1][1100:1200] = 0.8
population[:,13][1100:1200] = 0.01
population[:,14][1100:1200] = 0.01
#make D
#first leg
destinations[:,0][1200:1300] = 0.55
destinations[:,1][1200:1300] = 0.67
population[:,13][1200:1300] = 0.01
population[:,14][1200:1300] = 0.03
#Top
destinations[:,0][1300:1400] = 0.6
destinations[:,1][1300:1400] = 0.75
population[:,13][1300:1400] = 0.05
population[:,14][1300:1400] = 0.01
#Bottom
destinations[:,0][1400:1500] = 0.6
destinations[:,1][1400:1500] = 0.65
population[:,13][1400:1500] = 0.05
population[:,14][1400:1500] = 0.01
#second leg
destinations[:,0][1500:1600] = 0.65
destinations[:,1][1500:1600] = 0.7
population[:,13][1500:1600] = 0.01
population[:,14][1500:1600] = 0.05
#dash
destinations[:,0][1600:1700] = 0.725
destinations[:,1][1600:1700] = 0.7
population[:,13][1600:1700] = 0.03
population[:,14][1600:1700] = 0.01
#Make 1
destinations[:,0][1700:1800] = 0.8
destinations[:,1][1700:1800] = 0.7
population[:,13][1700:1800] = 0.01
population[:,14][1700:1800] = 0.05
#Make 9
#right leg
destinations[:,0][1800:1900] = 0.91
destinations[:,1][1800:1900] = 0.675
population[:,13][1800:1900] = 0.01
population[:,14][1800:1900] = 0.08
#roof
destinations[:,0][1900:2000] = 0.88
destinations[:,1][1900:2000] = 0.75
population[:,13][1900:2000] = 0.035
population[:,14][1900:2000] = 0.01
#middle
destinations[:,0][2000:2100] = 0.88
destinations[:,1][2000:2100] = 0.7
population[:,13][2000:2100] = 0.035
population[:,14][2000:2100] = 0.01
#left vertical leg
destinations[:,0][2100:2200] = 0.86
destinations[:,1][2100:2200] = 0.72
population[:,13][2100:2200] = 0.01
population[:,14][2100:2200] = 0.01
###################
##### ROW TWO #####
###################
#S
#first leg
destinations[:,0][2200:2300] = 0.115
destinations[:,1][2200:2300] = 0.5
population[:,13][2200:2300] = 0.01
population[:,14][2200:2300] = 0.03
#Top
destinations[:,0][2300:2400] = 0.15
destinations[:,1][2300:2400] = 0.55
population[:,13][2300:2400] = 0.05
population[:,14][2300:2400] = 0.01
#second leg
destinations[:,0][2400:2500] = 0.2
destinations[:,1][2400:2500] = 0.45
population[:,13][2400:2500] = 0.01
population[:,14][2400:2500] = 0.03
#middle
destinations[:,0][2500:2600] = 0.15
destinations[:,1][2500:2600] = 0.48
population[:,13][2500:2600] = 0.05
population[:,14][2500:2600] = 0.01
#bottom
destinations[:,0][2600:2700] = 0.15
destinations[:,1][2600:2700] = 0.41
population[:,13][2600:2700] = 0.05
population[:,14][2600:2700] = 0.01
#Make I
#leg
destinations[:,0][2700:2800] = 0.25
destinations[:,1][2700:2800] = 0.45
population[:,13][2700:2800] = 0.01
population[:,14][2700:2800] = 0.05
#I dot
destinations[:,0][2800:2900] = 0.25
destinations[:,1][2800:2900] = 0.55
population[:,13][2800:2900] = 0.01
population[:,14][2800:2900] = 0.01
#M
#Top
destinations[:,0][2900:3000] = 0.37
destinations[:,1][2900:3000] = 0.5
population[:,13][2900:3000] = 0.07
population[:,14][2900:3000] = 0.01
#Left leg
destinations[:,0][3000:3100] = 0.31
destinations[:,1][3000:3100] = 0.45
population[:,13][3000:3100] = 0.01
population[:,14][3000:3100] = 0.05
#Middle leg
destinations[:,0][3100:3200] = 0.37
destinations[:,1][3100:3200] = 0.45
population[:,13][3100:3200] = 0.01
population[:,14][3100:3200] = 0.05
#Right leg
destinations[:,0][3200:3300] = 0.43
destinations[:,1][3200:3300] = 0.45
population[:,13][3200:3300] = 0.01
population[:,14][3200:3300] = 0.05
#set all destinations active
population[:,11] = 1