-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab01.qmd
800 lines (579 loc) · 15.4 KB
/
lab01.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
---
title: "Lab01"
format:
html:
toc: true
code-fold: show
embed-resources: true
engine: jupyter
---
Vamos agora brincar de séries temporais.
Um problema que precisamos enfrentar com séries temporais é que como os dados têm uma ordem, precisamos de alguma forma ter essa ordem escrita na base.
Além disso, a ordem é pelo tempo, que é algo que tras informação por si só. Por exemplo, se estamos com uma série temporal de vendas, é natural pensar que certas épocas do ano vendam mais que outras, e que isso se repita ano a ano.
Por isso, uma base de dados de série temporal precisa saber lidar com essa natureza de dados.
# Bases de dados
Existem diversos pacotes utilizados para armazenar séries temporais no R. Veremos 3:
- `{base}`: dá para fazer muita coisa só com o base/stats, então você verá bastante código desse tipo por aí.
- `{xts}` / `{zoo}`: serve para organizar uma base de dados no formato de série temporal.
- `{tsibble}`: é a versão *tidy*, mais recente (2017).
## Base R
Historicamente, isso era feito pela função `ts()`, que funciona assim:
```{r}
set.seed(1)
# simulaçao de dados com um arima
dados <- data.frame(
mes = 1:48,
vendas = arima.sim(list(order = c(1,1,0), ar = 0.7), n = 48)[-1]
)
plot(dados)
```
```{r}
# mesma base de dados, mas lendo do github
dados <- readr::read_csv("https://github.com/padsInsper/202307-fa/raw/main/dados_lab01.csv")
plot(dados)
```
```{r}
dados_ts <- ts(dados)
# agora o eixo x não é mais o mês!
plot(dados_ts)
```
```{r}
plot(dados_ts[,"vendas"])
```
Agora vamos definir uma periodicidade
```{r}
dados_ts <- ts(
dados,
start = c(2005, 6), # começa no mês 6
frequency = 12 # um ciclo a cada 12 observações (anual)
)
plot(dados_ts[,"vendas"])
```
Também funciona
```{r}
dados_ts <- ts(
dados,
start = c(2005, 6), # começa no mês 6
deltat = 1/12
)
plot(dados_ts[,"vendas"])
```
Versão ggplot, usando pacote forecast (veremos adiante)
```{r}
forecast::autoplot(dados_ts[,"vendas"]) +
ggplot2::theme_minimal()
```
## xts
O `{xts}` é uma versão mais "parruda" do `ts()`, criado para resolver algumas dificuldades dos objetos. Ganhou muita popularidade nos entre 2000-2015 e é usado como base para uma série de modelos.
Atualmente, o xts não é mais necessário para trabalhar com séries temporais. No entanto, é muito comum encontrá-lo em códigos de modelagem mais "roots", construídos por pessoas que aprenderam com base R.
```{r}
dados_xts <- xts::as.xts(dados_ts)
plot(dados_xts[,"vendas"])
forecast::autoplot(dados_xts[,"vendas"])
```
Obs: outro pacote que você encontrará por aí é o `{zoo}`, mas ele é tão esquisito que não vale a pena estudá-lo. Se você encontrar código que usa o zoo e precisar reproduzir, recomendo que estude as funções de forma individualizada. O `{xts}` é uma forma de melhorar o `{zoo}`.
## tsibble
As `tsibble`s ([tsibble.tidyverts.org](https://tsibble.tidyverts.org)) são a versão tidy das séries temporais, e também a versão séries temporais das amadas tibbles. Pegando o exemplo anterior, temos
```{r, error=TRUE}
tsibble::tsibble(
mes = dados$mes,
vendas = dados$vendas
)
```
Isso significa precisamos passar um índice, obrigatoriamente. O `{xts}` faz isso modificando o objeto, enquanto que a `tsibble` faz isso com uma coluna
```{r}
dados_tsibble <- tsibble::tsibble(
mes = dados$mes,
vendas = dados$vendas,
index = mes
)
dados_tsibble
```
outra alternativa:
```{r}
dados_tsibble <- dados |>
tsibble::as_tsibble(index = mes)
```
Para dar a periodicidade, modificamos a coluna que indexa os dados, similar ao que faz o xts, mas de forma mais explícita:
```{r}
# tsibble::yearmonth(1) +4 + 12*35
# tsibble::yearmonth(as.Date("2005-06-01"))
dados_tsibble <- dados |>
dplyr::mutate(
mes = tsibble::yearmonth(mes),
# se o mes fosse uma data, isso seria mais facil
mes = mes + 12*35 + 4
) |>
tsibble::as_tsibble(index = mes)
dados_tsibble
```
```{r}
# outra forma
dados_tsibble <- dados |>
dplyr::mutate(
mes = as.Date("2005-05-01") + months(mes),
mes = tsibble::yearmonth(mes)
) |>
tsibble::as_tsibble(index = mes)
dados_tsibble
```
Finalmente, para plotar:
```{r}
feasts::autoplot(dados_tsibble, vendas)
```
## Python
```{python}
import pandas as pd
from datetime import timedelta
import matplotlib.pyplot as plt
import seaborn as sns
dados = pd.read_csv(
"https://github.com/padsInsper/202307-fa/raw/main/dados_lab01.csv"
)
#dados.plot()
dados.info()
sns.lineplot(data = dados, x='mes', y='vendas')
```
```{python}
dates = pd.date_range("2005-06-01", periods = 48, freq = "M")
serie_dados = pd.Series(dados['vendas'].array, index = dates)
sns.lineplot(data = serie_dados)
# set x axis label 45 degrees
plt.xticks(rotation=45, ha='right')
```
# Estatísticas básicas
## base R
### decomposição
```{r}
dec_sum <- decompose(dados_ts[,"vendas"])
dec_mult <- decompose(dados_ts[,"vendas"], "multiplicative")
plot(dec_sum)
plot(dec_mult)
set.seed(7)
dados_turnover <- tsibbledata::aus_retail |>
dplyr::filter(
`Series ID` %in% sample(`Series ID`, 2)
) |>
dplyr::select(Month, Turnover)
x <- ts(dados_turnover, start = c(1982, 4), frequency = 12)
plot(decompose(x[,"Turnover"], "multiplicative"))
plot(decompose(x[,"Turnover"]))
```
$$Y = T + S + e$$
$$log(Y) = log(T) + log(S) + log(e)$$
```{r}
dados_exemplos <- data.frame(
mes = 1:48,
vendas = arima.sim(list(order = c(1,0,0), ar = c(0.8)), n = 48)
)
dados_ts_exemplos <- ts(dados_exemplos)
acf(dados_ts_exemplos[,"vendas"])
```
```{r}
pacf(dados_ts[,"vendas"])
```
## forecast
O pacote `{forecast}` é uma das ferramentas mais usadas no dia-a-dia de quem trabalha com séries temporais.
Construído antes do tidymodels, trata-se de um pacote com diversos modelos para lidar com séries temporais, mas ainda fora do ambiente "tidy". O livro-base para uso do forecast é o FPP2 (https://otexts.com/fpp2/).
Atualmente, temos o FPP3 com alternativas "tidy", mas isso não implica que o forecast cairá em desuso, pois ele é muito bom.
Por enquanto veremos só a parte descritiva. No próximo lab, trabalharemos com modelagem.
```{r}
fit_ets <- forecast::ets(dados_ts[,"vendas"])
forecast::autoplot(fit_ets)
```
```{r}
forecast::ggseasonplot(dados_ts[,"vendas"]) +
ggplot2::scale_colour_brewer() +
ggplot2::theme_minimal()
```
```{r}
forecast::ggseasonplot(dados_ts[,"vendas"], polar = TRUE)
```
Mais exemplos no FPP2.
Autocorrelação
```{r}
library(forecast)
forecast::ggAcf(dados_ts[,"vendas"])
```
```{r}
forecast::ggPacf(dados_ts[,"vendas"])
```
## feasts
O `feasts` é o pacote atual para análise descritiva de séries temporais. Ele é descrito no FPP3 (https://otexts.com/fpp3/) e está alinhado com os princípios tidy.
```{r}
dados_tsibble |>
model(
classical_decomposition(vendas)
) |>
components() |>
autoplot()
```
```{r}
dados_tsibble |>
model(
STL(vendas)
) |>
components() |>
autoplot()
```
```{r}
dados_tsibble |>
feasts::gg_season(y = vendas)
```
```{r}
dados_tsibble |>
feasts::gg_season(y = vendas, polar = TRUE)
```
Mais exemplos no FPP3.
```{r}
dados_tsibble |>
feasts::ACF(vendas) |>
feasts::autoplot()
```
A PACF é calculada da seguinte forma: a correlação parcial entre $y_t$ e $y_{t-k}$ é a correlação entre $y_t$ e $y_{t-k}$, removendo o efeito de $y_{t-1}$, $y_{t-2}$, ..., $y_{t-k+1}$.
```{r}
dados_tsibble |>
feasts::PACF(vendas) |>
feasts::autoplot()
```
```{r}
dados_tsibble |>
feasts::gg_lag(vendas, geom = "point")
```
Para pegar os componentes de forma tidy:
```{r}
dados_tsibble |>
fabletools::model(feasts::STL(vendas)) |>
fabletools::components() |>
feasts::autoplot()
```
## Python
```{python}
import statsmodels.api as sm
res = sm.tsa.seasonal_decompose(serie_dados)
resplot = res.plot()
```
```{r}
aus_production |>
autoplot(Bricks)
```
## Exercícios
Link: <https://otexts.com/fpp3/graphics-exercises.html> Faça o exercício 8
```{r}
dados_tsibble |>
gg_tsdisplay(vendas)
```
```{r}
dados_tsibble |>
gg_tsdisplay(vendas, plot_type = "partial")
```
```{r}
dados_tsibble |>
mutate(vendas_dif = difference(vendas)) |>
gg_tsdisplay(vendas_dif, plot_type = "partial")
```
BINGO ARIMA
# Forecasts simples
## pacote forecast
```{r}
dados_ts_vendas <- dados_ts[,"vendas"]
media <- forecast::meanf(dados_ts_vendas, 5)
naive <- forecast::naive(dados_ts_vendas, 5)
seasonal_naive <- forecast::snaive(dados_ts_vendas, 5)
drift <- forecast::rwf(dados_ts_vendas, 5, drift = TRUE)
```
```{r}
dados_ts_vendas |>
forecast::autoplot() +
forecast::autolayer(media, series = "Media", PI = FALSE) +
forecast::autolayer(naive, series = "Naive", PI = FALSE) +
forecast::autolayer(seasonal_naive, series = "SNaive", PI = FALSE) +
forecast::autolayer(drift, series = "Drift", PI = FALSE)
```
## pacote feasts
Média móvel
Modelos que vimos no forecast
```{r}
dados_para_modelo <- dados_tsibble |>
tsibble::filter_index("2005 jun" ~ "2008 dec")
modelos <- dados_para_modelo |>
fabletools::model(
mean = fable::MEAN(vendas),
naive = fable::NAIVE(vendas),
snaive = fable::SNAIVE(vendas),
drift = fable::RW(vendas ~ drift())
) |>
fabletools::forecast(h = 10)
modelos |>
feasts::autoplot(dados_para_modelo, level = NULL)
```
# Prophet
## R
Forecast
```{r}
library(prophet)
da <- readr::read_csv("https://github.com/padsInsper/202307-fa/raw/main/serie_temporal.csv")
# dados_prophet <- dados |>
# transmute(
# ds = as.Date("2005-05-01") + months(mes),
# y = vendas
# )
m <- prophet(da)
futuro <- make_future_dataframe(
m, periods = 12, freq = "month"
)
forecast <- predict(m, futuro)
plot(m, forecast)
```
Componentes
```{r}
prophet_plot_components(m, forecast)
```
## Python
```{python}
from prophet import Prophet
import pandas as pd
dados = pd.read_csv("https://github.com/padsInsper/202307-fa/raw/main/serie_temporal.csv")
```
```{python}
m = Prophet()
m.fit(dados)
# make future dataframe
future = m.make_future_dataframe(periods=12, freq='MS')
# predict method
forecast = m.predict(future)
m.plot(forecast)
```
# ARIMA
```{r}
library(fpp3)
link <- "https://www.tesourotransparente.gov.br/ckan/dataset/f85b6632-1c9c-4beb-9e60-72e91156c984/resource/f52c016b-1773-459b-a28f-6ddc4966a702/download/Transferencias---Dados-Consolidados.xlsx"
g <- httr::GET(link, httr::write_disk(tmp <- fs::file_temp(ext = ".xlsx")))
dados_raw <- tmp |>
readxl::read_excel(1, "C38:OE38", col_names = FALSE,
.name_repair = "minimal") |>
janitor::clean_names() |>
tidyr::pivot_longer(dplyr::everything()) |>
dplyr::mutate(
date = seq(as.Date("1991-01-01"), as.Date("2023-09-01"), "1 month"),
value = value / 1e9
) |>
dplyr::select(-name) |>
tidyr::fill(value) |>
dplyr::filter(lubridate::year(date) >= 1998)
```
# Entendimento da série
1. Plote os gráficos da série e das ACF/PACF e discorra sobre o aspecto da série.
Faça o teste de raíz unitária e explique as conclusões. Existe tendência
estocástica?
```{r}
dados_raw |>
ggplot(aes(date, value)) +
geom_line()
```
```{r}
dados_raw |>
ggplot(aes(date, log(value))) +
geom_line()
```
Parece que faz sentido deflacionar a base nesse caso.
```{r}
dados <- dados_raw |>
mutate(
value = deflateBR::deflate(
value, date, "09/2023", index = "ipca"
)
)
```
```{r}
# série deflacionada
dados |>
ggplot(aes(date, value)) +
geom_line()
```
```{r}
tdata <- dados |>
mutate(date = yearmonth(date)) |>
as_tsibble(index = date)
```
```{r}
tdata |>
gg_season(value)
```
```{r}
tdata |>
gg_tsdisplay(value, plot_type = "partial")
```
```{r}
tdata |>
mutate(value = difference(value, 12)) |>
gg_tsdisplay(value, plot_type = "partial")
```
## Teste de hipótese
```{r}
tdata |>
features(value, unitroot_nsdiffs)
```
```{r}
tdata |>
mutate(value = difference(value, 12)) |>
features(value, unitroot_ndiffs)
```
## Decomposição
2. Use um método de decomposição estudado e explique os componentes, tendo
em vista o aspecto da série. Existe sazonalidade? Qual periodicidade?
```{r}
tdata |>
fabletools::model(
stl = feasts::STL(value)
) |>
fabletools::components() |>
autoplot()
```
# Modelo SARIMA
3. Identifique um modelo SARIMA apropriado. Justifique o modelo escolhido
através de critérios de informação e/ou usando a etapa de identificação da
abordagem Box-Jenkins. Nesta etapa é possível utilizar um método automático
de seleção das ordens do modelo.
```{r}
# knitr::include_graphics("https://otexts.com/fpp3/figs/arimaflowchart.png")
par(mar = c(0,0,0,0))
magick::image_read("https://otexts.com/fpp3/figs/arimaflowchart.png") |>
plot()
```
```{r}
fit <- tdata |>
model(
arima_manual = ARIMA(value ~ 1 + pdq(1,0,1) + PDQ(2,1,1)),
stepwise = ARIMA(value),
search = ARIMA(value, stepwise = FALSE)
)
fit |>
pivot_longer(
everything()
)
```
```{r}
glance(fit)
```
## Diagnóstico
4. Faça a verificação de diagnóstico residual de seu modelo ARIMA. Os resíduos
são ruído branco?
```{r}
fit |>
select(stepwise) |>
gg_tsresiduals(lag = 36)
```
```{r}
augment(fit) |>
filter(.model == "stepwise") |>
features(.innov, ljung_box, lag = 36, dof = 4)
```
## Previsão
5. Use o modelo SARIMA de sua escolha para fazer previsões h (livre escolha) passos à frente.
```{r}
class(forecast(fit, h = 24))
forecast(fit, h = 24) |>
filter(.model == "stepwise") |>
autoplot(tdata)
```
```{r}
?fabletools:::autoplot.fbl_ts
```
# Exercício em sala
Faça a análise da série que está nesse link: https://raw.githubusercontent.com/padsInsper/202234-fa/main/material/lab01/serie_temporal.csv
```{r}
dados <- readr::read_csv("https://raw.githubusercontent.com/padsInsper/202234-fa/main/material/lab01/serie_temporal.csv")
dados_tsibble <- dados |>
tsibble::as_tsibble(index = ds)
```
1. plotar a série
```{r}
dados_tsibble |>
autoplot(y)
```
2. plotar os gráficos sazonais
```{r}
dados_tsibble |>
gg_season(y)
```
3. Decomposição tradicional (base R) e STL
```{r}
dados_ts <- ts(dados$y, start = c(2000), freq = 365)
decompose(dados_ts) |>
plot()
```
```{r}
dados_tsibble |>
model(
stl = STL(y)
) |>
components() |>
autoplot()
```
4. ACF e PACF
```{r}
dados_tsibble |>
gg_tsdisplay(y, plot_type = "partial")
```
```{r}
dados_tsibble |>
fabletools::features(
y,
list(
feasts::unitroot_kpss,
feasts::unitroot_ndiffs
)
)
```
```{r}
dados_tsibble |>
mutate(y_dif = difference(y)) |>
gg_tsdisplay(y_dif, plot_type = "partial")
```
```{r}
dados_tsibble |>
mutate(y_dif = difference(y)) |>
fabletools::features(
y_dif,
list(
feasts::unitroot_kpss,
feasts::unitroot_ndiffs
)
)
```
```{r}
fit <- dados_tsibble |>
fabletools::model(
# arima_manual = fable::ARIMA(vendas ~ 1 + pdq(2,0,2) + PDQ(0,0,0)),
stepwise = fable::ARIMA(),
search = fable::ARIMA(stepwise = FALSE)
)
fit
```
5. Gráficos com as diferenças
6. Previsão usando naive, drift, snaive etc
```{r}
dados_tsibble |>
fabletools::model(
mean = fable::MEAN(y),
naive = fable::NAIVE(y),
snaive = fable::SNAIVE(y),
drift = fable::RW(y ~ drift())
) |>
fabletools::forecast(h = 2000) |>
feasts::autoplot(dados_tsibble, level = NULL)
```
7. Previsão usando o prophet, testando diferentes parâmetros
```{r}
m <- prophet(dados)
futuro <- make_future_dataframe(
m, periods = 200
)
forecast <- predict(m, futuro)
plot(m, forecast)
```
## Exercícios do livro
**Ler**: https://otexts.com/fpp3/accuracy.html
**Link**: https://otexts.com/fpp3/toolbox-exercises.html
Faça os exercícios 2, 6