forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathint_tuple.hpp
957 lines (837 loc) · 27.4 KB
/
int_tuple.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/container/tuple.hpp>
#include <cute/container/array.hpp>
#include <cute/algorithm/tuple_algorithms.hpp>
#include <cute/numeric/integral_constant.hpp>
/** IntTuple is an integer or a tuple of IntTuples.
* This file holds utilities for working with IntTuples,
* but does not hold a concrete concept or class of IntTuple.
*/
namespace cute
{
// Implementation of get<0>(Integral).
// Even though is_tuple<Integral> is false and tuple_size<Integral> doesn't compile,
// CuTe defines rank(Integral) as 1, so it's useful for get<0>(Integral) to return its input
template <size_t I, class T, __CUTE_REQUIRES(cute::is_integral<cute::remove_cvref_t<T>>::value)>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(T&& t) noexcept
{
static_assert(I == 0, "Index out of range");
return static_cast<T&&>(t);
}
// Custom recursive get for anything that implements get<I>(.) (for a single integer I).
template <size_t I0, size_t I1, size_t... Is, class T>
CUTE_HOST_DEVICE constexpr
decltype(auto)
get(T&& t) noexcept
{
return get<I1, Is...>(get<I0>(static_cast<T&&>(t)));
}
//
// rank
//
template <int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
rank(IntTuple const& t)
{
if constexpr (sizeof...(Is) == 0) {
if constexpr (is_tuple<IntTuple>::value) {
return Int<tuple_size<IntTuple>::value>{};
} else {
return Int<1>{};
}
} else {
return rank(get<Is...>(t));
}
CUTE_GCC_UNREACHABLE;
}
template <class IntTuple>
using rank_t = decltype(rank(declval<IntTuple>()));
template <class IntTuple>
static constexpr int rank_v = rank_t<IntTuple>::value;
//
// shape
//
template <class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
shape(IntTuple const& s)
{
if constexpr (is_tuple<IntTuple>::value) {
return transform(s, [](auto const& a) { return shape(a); });
} else {
return s;
}
CUTE_GCC_UNREACHABLE;
}
template <int I, int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
shape(IntTuple const& s)
{
if constexpr (is_tuple<IntTuple>::value) {
return shape<Is...>(get<I>(s));
} else {
return get<I,Is...>(shape(s));
}
CUTE_GCC_UNREACHABLE;
}
//
// max
//
template <class T0, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
max(T0 const& t0, Ts const&... ts)
{
if constexpr (is_tuple<T0>::value) {
return cute::max(cute::apply(t0, [](auto const&... a){ return cute::max(a...); }), ts...);
} else if constexpr (sizeof...(Ts) == 0) {
return t0;
} else {
return cute::max(t0, cute::max(ts...));
}
CUTE_GCC_UNREACHABLE;
}
//
// min
//
template <class T0, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
min(T0 const& t0, Ts const&... ts)
{
if constexpr (is_tuple<T0>::value) {
return cute::min(cute::apply(t0, [](auto const&... a){ return cute::min(a...); }), ts...);
} else if constexpr (sizeof...(Ts) == 0) {
return t0;
} else {
return cute::min(t0, cute::min(ts...));
}
CUTE_GCC_UNREACHABLE;
}
//
// gcd
//
template <class T0, class... Ts>
CUTE_HOST_DEVICE constexpr
auto
gcd(T0 const& t0, Ts const&... ts)
{
if constexpr (is_tuple<T0>::value) {
return cute::gcd(cute::apply(t0, [](auto const&... a){ return cute::gcd(a...); }), ts...);
} else if constexpr (sizeof...(Ts) == 0) {
return t0;
} else {
return cute::gcd(t0, cute::gcd(ts...));
}
CUTE_GCC_UNREACHABLE;
}
//
// depth
//
template <int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
depth(IntTuple const& t)
{
if constexpr (sizeof...(Is) == 0) {
if constexpr (is_tuple<IntTuple>::value) {
return Int<1>{} + cute::apply(t, [](auto const&... v){ return cute::max(depth(v)...); });
} else {
return Int<0>{};
}
} else {
return depth(get<Is...>(t));
}
CUTE_GCC_UNREACHABLE;
}
template <class Tuple>
using depth_t = decltype(depth(declval<Tuple>()));
template <class Tuple>
static constexpr int depth_v = depth_t<Tuple>::value;
//
// product
//
// Implementation of product as a function object
struct Product
{
template <class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
operator()(IntTuple const& a) const
{
if constexpr (is_tuple<IntTuple>::value) {
if constexpr (tuple_size<IntTuple>::value == 0) {
return Int<1>{};
} else {
return cute::transform_apply(a, Product{}, multiplies_unary_lfold{});
}
} else if constexpr (cute::is_integral<IntTuple>::value) {
return a;
}
CUTE_GCC_UNREACHABLE;
}
};
// Callable product function object
CUTE_INLINE_CONSTANT Product product;
// Return a rank(t) tuple @a result such that get<i>(@a result) = product(get<i>(@a t))
template <class Tuple>
CUTE_HOST_DEVICE constexpr
auto
product_each(Tuple const& t)
{
return transform(wrap(t), product);
}
// Take the product of Tuple at the leaves of TupleG
template <class Tuple, class TupleG>
CUTE_HOST_DEVICE constexpr
auto
product_like(Tuple const& tuple, TupleG const& guide)
{
return transform_leaf(guide, tuple, [](auto const& g, auto const& t) { return product(t); });
}
// Return the product of elements in a mode
template <int... Is, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
size(IntTuple const& a)
{
if constexpr (sizeof...(Is) == 0) {
return product(a);
} else {
return size(get<Is...>(a));
}
CUTE_GCC_UNREACHABLE;
}
template <class IntTuple>
static constexpr int size_v = decltype(size(declval<IntTuple>()))::value;
//
// sum
//
template <class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
sum(IntTuple const& a)
{
if constexpr (is_tuple<IntTuple>::value) {
return cute::apply(a, [](auto const&... v){ return (Int<0>{} + ... + sum(v)); });
} else {
return a;
}
CUTE_GCC_UNREACHABLE;
}
//
// inner_product
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
inner_product(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
static_assert(tuple_size<IntTupleA>::value == tuple_size<IntTupleB>::value, "Mismatched ranks");
return transform_apply(a, b, [](auto const& x, auto const& y) { return inner_product(x,y); },
[](auto const&... v) { return (Int<0>{} + ... + v); });
} else {
return a * b;
}
CUTE_GCC_UNREACHABLE;
}
//
// ceil_div
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
ceil_div(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value) {
if constexpr (is_tuple<IntTupleB>::value) { // tuple tuple
static_assert(tuple_size<IntTupleA>::value >= tuple_size<IntTupleB>::value, "Mismatched ranks");
constexpr int R = tuple_size<IntTupleA>::value; // Missing ranks in TupleB are implicitly 1
return transform(a, append<R>(b,Int<1>{}), [](auto const& x, auto const& y) { return ceil_div(x,y); });
} else { // tuple int
auto const [result, rest] = fold(a, cute::make_tuple(cute::make_tuple(), b),
[] (auto const& init, auto const& ai) {
return cute::make_tuple(append(get<0>(init), ceil_div(ai, get<1>(init))), ceil_div(get<1>(init), ai));
});
return result;
}
} else
if constexpr (is_tuple<IntTupleB>::value) { // int tuple
return ceil_div(a, product(b));
} else {
return (a + b - Int<1>{}) / b;
}
CUTE_GCC_UNREACHABLE;
}
//
// round_up
// Round @a a up to the nearest multiple of @a b.
// For negative numbers, rounds away from zero.
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
round_up(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
static_assert(tuple_size<IntTupleA>::value >= tuple_size<IntTupleB>::value, "Mismatched ranks");
constexpr int R = tuple_size<IntTupleA>::value; // Missing ranks in TupleB are implicitly 1
return transform(a, append<R>(b,Int<1>{}), [](auto const& x, auto const& y) { return round_up(x,y); });
} else {
return ((a + b - Int<1>{}) / b) * b;
}
CUTE_GCC_UNREACHABLE;
}
/** Division for Shapes
* Case Tuple Tuple:
* Perform shape_div element-wise
* Case Tuple Int:
* Fold the division of b across each element of a
* Example: shape_div((4,5,6),40) -> shape_div((1,5,6),10) -> shape_div((1,1,6),2) -> (1,1,3)
* Case Int Tuple:
* Return shape_div(a, product(b))
* Case Int Int:
* Enforce the divisibility condition a % b == 0 || b % a == 0 when possible
* Return a / b with rounding away from 0 (that is, 1 or -1 when a < b)
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
shape_div(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value) {
if constexpr (is_tuple<IntTupleB>::value) { // tuple tuple
static_assert(tuple_size<IntTupleA>::value == tuple_size<IntTupleB>::value, "Mismatched ranks");
return transform(a, b, [](auto const& x, auto const& y) { return shape_div(x,y); });
} else { // tuple int
auto const [result, rest] = fold(a, cute::make_tuple(cute::make_tuple(), b),
[] (auto const& init, auto const& ai) {
return cute::make_tuple(append(get<0>(init), shape_div(ai, get<1>(init))), shape_div(get<1>(init), ai));
});
return result;
}
} else
if constexpr (is_tuple<IntTupleB>::value) { // int tuple
return shape_div(a, product(b));
} else
if constexpr (is_static<IntTupleA>::value && is_static<IntTupleB>::value) {
static_assert(IntTupleA::value % IntTupleB::value == 0 || IntTupleB::value % IntTupleA::value == 0, "Static shape_div failure");
return C<shape_div(IntTupleA::value, IntTupleB::value)>{};
} else { // int int
//assert(a % b == 0 || b % a == 0); // Waive dynamic assertion
return a / b != 0 ? a / b : signum(a) * signum(b); // Division with rounding away from zero
}
CUTE_GCC_UNREACHABLE;
}
/** Minimum for Shapes
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
shape_min(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value || is_tuple<IntTupleB>::value) {
static_assert(dependent_false<IntTupleA>, "Not implemented.");
} else
if constexpr (is_constant<1, IntTupleA>::value || is_constant<1, IntTupleB>::value) {
return Int<1>{}; // _1 is less than all other shapes, preserve static
} else {
return cute::min(a, b);
}
CUTE_GCC_UNREACHABLE;
}
/** Return a tuple the same profile as A scaled by corresponding elements in B
*/
template <class A, class B>
CUTE_HOST_DEVICE constexpr
auto
elem_scale(A const& a, B const& b)
{
if constexpr (is_tuple<A>::value) {
return transform(a, b, [](auto const& x, auto const& y) { return elem_scale(x,y); });
} else {
return a * product(b);
}
CUTE_GCC_UNREACHABLE;
}
/** Test if two IntTuple have the same profile (hierarchical rank division)
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
congruent(IntTupleA const& a, IntTupleB const& b)
{
return bool_constant<is_same<decltype(repeat_like(shape(a),_0{})),
decltype(repeat_like(shape(b),_0{}))>::value>{};
}
template <class A, class B>
using is_congruent = decltype(congruent(declval<A>(), declval<B>()));
/** Test if two IntTuple have the similar profiles up to Shape A (hierarchical rank division)
* weakly_congruent is a partial order on A and B: A <= B
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
weakly_congruent(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
if constexpr (tuple_size<IntTupleA>::value != tuple_size<IntTupleB>::value) {
return false_type{};
} else {
return transform_apply(a, b, [](auto const& x, auto const& y) { return weakly_congruent(x,y); },
[](auto const&... z) { return (true_type{} && ... && z); });
}
} else if constexpr (is_integral<IntTupleA>::value) {
return true_type{};
} else if constexpr (is_integral<IntTupleB>::value) {
return false_type{};
} else {
return weakly_congruent(shape(a), shape(b));
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class B>
using is_weakly_congruent = decltype(weakly_congruent(declval<A>(), declval<B>()));
/** Test if Shape A is compatible with Shape B:
* the size of A and B are the same, and
* any coordinate into A can also be used as a coordinate into B
* compatible is a partial order on A and B: A <= B
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
compatible(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
if constexpr (tuple_size<IntTupleA>::value != tuple_size<IntTupleB>::value) {
return false_type{};
} else {
return transform_apply(a, b, [](auto const& x, auto const& y) { return compatible(x,y); },
[](auto const&... z) { return (true_type{} && ... && z); });
}
} else if constexpr (is_integral<IntTupleA>::value) {
return a == size(b);
} else if constexpr (is_integral<IntTupleB>::value) {
return false_type{};
} else {
return compatible(shape(a), shape(b));
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class B>
using is_compatible = decltype(compatible(declval<A>(), declval<B>()));
/** Test if Shape A is weakly compatible with Shape B:
* there exists a Shape C congruent to A such that compatible(elem_scale(A,C), B)
* weakly_compatible is a partial order on A and B: A <= B
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
weakly_compatible(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
if constexpr (tuple_size<IntTupleA>::value != tuple_size<IntTupleB>::value) {
return false_type{};
} else {
return transform_apply(a, b, [](auto const& x, auto const& y) { return weakly_compatible(x,y); },
[](auto const&... z) { return (true_type{} && ... && z); });
}
} else if constexpr (is_integral<IntTupleA>::value) {
return size(b) % a == Int<0>{};
} else if constexpr (is_integral<IntTupleB>::value) {
return false_type{};
} else {
return weakly_compatible(shape(a), shape(b));
}
CUTE_GCC_UNREACHABLE;
}
template <class A, class B>
using is_weakly_compatible = decltype(weakly_compatible(declval<A>(), declval<B>()));
/** Replace the elements of Tuple B that are paired with an Int<0> with an Int<1>
*/
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value) {
return transform(a, b, [](auto const& x, auto const& y) { return filter_zeros(x,y); });
} else if constexpr (is_constant<0, IntTupleA>::value) {
return Int<1>{};
} else {
return b;
}
CUTE_GCC_UNREACHABLE;
}
template <class Tuple>
CUTE_HOST_DEVICE constexpr
auto
filter_zeros(Tuple const& t)
{
return filter_zeros(t, t);
}
//
// Converters and constructors with arrays and params
//
/** Make an IntTuple of rank N from an Indexable array.
* Access elements up to a dynamic index n, then use init (requires compatible types)
* Consider cute::take<B,E> if all indexing is known to be valid
* \code
* std::vector<int> a = {6,3,4};
* auto tup = make_int_tuple<5>(a, a.size(), 0) // (6,3,4,0,0)
* \endcode
*/
template <int N, class Indexable, class T>
CUTE_HOST_DEVICE constexpr
auto
make_int_tuple(Indexable const& t, int n, T const& init)
{
static_assert(N > 0);
if constexpr (N == 1) {
return 0 < n ? t[0] : init;
} else {
return transform(make_seq<N>{}, [&](auto i) { return i < n ? t[i] : init; });
}
CUTE_GCC_UNREACHABLE;
}
/** Fill the dynamic values of a Tuple with values from another Tuple
* \code
* auto params = make_tuple(6,3,4);
* cute::tuple<Int<1>, cute::tuple<int, int, Int<3>>, int, Int<2>> result;
* fill_int_tuple_from(result, params); // (_1,(6,3,_3),4,_2)
* \endcode
*/
template <class Tuple, class TupleV>
CUTE_HOST_DEVICE constexpr
auto
fill_int_tuple_from(Tuple& result, TupleV const& vals)
{
return fold(result, vals, [](auto const& init, auto&& r) {
if constexpr (is_static<remove_cvref_t<decltype(r)>>::value) { // Skip static elements of result
return init;
} else if constexpr (is_tuple<remove_cvref_t<decltype(r)>>::value) { // Recurse into tuples
return fill_int_tuple_from(r, init);
} else { // Assign and consume arg
static_assert(tuple_size<remove_cvref_t<decltype(init)>>::value > 0, "Not enough values to fill with!");
r = get<0>(init);
return remove<0>(init);
}
CUTE_GCC_UNREACHABLE;
});
}
/** Make a "Tuple" by filling in the dynamic values in order from the arguments
* \code
* using result_t = cute::tuple<Int<1>, cute::tuple<int, int, Int<3>>, int, Int<2>>;
* auto result = make_int_tuple_from<result_t>(6,3,4); // (_1,(6,3,_3),4,_2)
* \endcode
*/
template <class Tuple, class... Ts>
CUTE_HOST_DEVICE constexpr
Tuple
make_int_tuple_from(Ts const&... ts)
{
Tuple result = Tuple{};
fill_int_tuple_from(result, cute::make_tuple(ts...));
return result;
}
/** Convert a tuple to a flat homogeneous array of type T
* \code
* auto tup = cute::make_tuple(Int<1>{}, cute::make_tuple(6,3,Int<3>{}),4,Int<2>{});
* cute::array<uint64_t,6> result = to_array<uint64_t>(tup); // [1,6,3,3,4,2]
* \endcode
*/
template <class T = int64_t, class IntTuple>
CUTE_HOST_DEVICE constexpr
auto
to_array(IntTuple const& t)
{
auto flat_t = flatten_to_tuple(t);
constexpr int N = tuple_size<decltype(flat_t)>::value;
cute::array<T,N> result;
for_each(make_seq<N>{}, [&] (auto i) { result[i] = get<i>(flat_t); });
return result;
}
//
// Comparison operators
//
//
// There are many ways to compare tuple of elements and because CuTe is built
// on parameterizing layouts of coordinates, some comparisons are appropriate
// only in certain cases.
// -- lexicographical comparison [reverse, reflected, revref] : Correct for coords in RowMajor Layout
// -- colexicographical comparison [reverse, reflected, revref] : Correct for coords in ColMajor Layout
// -- element-wise comparison [any,all] :
// This can be very confusing. To avoid errors in selecting the appropriate
// comparison, op<|op<=|op>|op>= are *not* implemented for cute::tuple.
//
// When actually desiring to order coordinates, the user should map them to
// their indices within the Layout they came from:
// e.g. layoutX(coordA) < layoutX(coordB)
// That said, we implement the three most common ways to compare tuples below.
// These are implemented with slighly more explicit names than op<.
//
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
lex_less(IntTupleA const& a, IntTupleB const& b);
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
colex_less(IntTupleA const& a, IntTupleB const& b);
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
elem_less(IntTupleA const& a, IntTupleB const& b);
namespace detail {
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
lex_less_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleB is exhausted
} else if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted, TupleB is not exhausted
} else {
return lex_less(get<I>(a), get<I>(b)) || (get<I>(a) == get<I>(b) && lex_less_impl<I+1>(a,b));
}
CUTE_GCC_UNREACHABLE;
}
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
colex_less_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleB is exhausted
} else if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted, TupleB is not exhausted
} else {
constexpr size_t A = tuple_size<TupleA>::value - 1 - I;
constexpr size_t B = tuple_size<TupleB>::value - 1 - I;
return colex_less(get<A>(a), get<B>(b)) || (get<A>(a) == get<B>(b) && colex_less_impl<I+1>(a,b));
}
CUTE_GCC_UNREACHABLE;
}
template <size_t I, class TupleA, class TupleB>
CUTE_HOST_DEVICE constexpr
auto
elem_less_impl(TupleA const& a, TupleB const& b)
{
if constexpr (I == tuple_size<TupleA>::value) {
return cute::true_type{}; // Terminal: TupleA is exhausted
} else if constexpr (I == tuple_size<TupleB>::value) {
return cute::false_type{}; // Terminal: TupleA is not exhausted, TupleB is exhausted
} else {
return elem_less(get<I>(a), get<I>(b)) && elem_less_impl<I+1>(a,b);
}
CUTE_GCC_UNREACHABLE;
}
} // end namespace detail
// Lexicographical comparison
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
lex_less(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
return detail::lex_less_impl<0>(a, b);
} else {
return a < b;
}
CUTE_GCC_UNREACHABLE;
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
lex_leq(T const& t, U const& u) {
return !lex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
lex_gtr(T const& t, U const& u) {
return lex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
lex_geq(T const& t, U const& u) {
return !lex_less(t, u);
}
// Colexicographical comparison
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
colex_less(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
return detail::colex_less_impl<0>(a, b);
} else {
return a < b;
}
CUTE_GCC_UNREACHABLE;
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
colex_leq(T const& t, U const& u) {
return !colex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
colex_gtr(T const& t, U const& u) {
return colex_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
colex_geq(T const& t, U const& u) {
return !colex_less(t, u);
}
// Elementwise [all] comparison
template <class IntTupleA, class IntTupleB>
CUTE_HOST_DEVICE constexpr
auto
elem_less(IntTupleA const& a, IntTupleB const& b)
{
if constexpr (is_tuple<IntTupleA>::value && is_tuple<IntTupleB>::value) {
return detail::elem_less_impl<0>(a, b);
} else {
return a < b;
}
CUTE_GCC_UNREACHABLE;
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
elem_leq(T const& t, U const& u) {
return !elem_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
elem_gtr(T const& t, U const& u) {
return elem_less(u, t);
}
template <class T, class U>
CUTE_HOST_DEVICE constexpr
auto
elem_geq(T const& t, U const& u) {
return !elem_less(t, u);
}
namespace detail {
/** Increment a (dynamic) coord lexicographically within a shape
* @pre is_congruent<Coord,Shape>::value
* \code
* auto shape = make_shape(1,2,make_shape(2,3),3);
*
* int i = 0;
* for (auto coord = repeat_like(shape, 0); back(coord) != back(shape); increment(coord, shape)) {
* std::cout << i++ << ": " << coord << std::endl;
* }
* assert(i == size(shape));
* \endcode
*/
template <int I = 0, class Coord, class Shape>
CUTE_HOST_DEVICE constexpr
void
increment(Coord& coord, Shape const& shape)
{
if constexpr (is_integral<Coord>::value) {
++coord;
} else {
increment(get<I>(coord), get<I>(shape));
if constexpr (I+1 < tuple_size<Coord>::value) {
if (back(get<I>(coord)) == back(get<I>(shape))) {
back(get<I>(coord)) = 0;
increment<I+1>(coord, shape);
}
}
}
}
} // end namespace detail
struct ForwardCoordIteratorSentinal
{};
// A forward iterator for a starting coordinate in a shape's domain, and a shape.
// The starting coordinate may be zero but need not necessarily be.
template <class Coord, class Shape>
struct ForwardCoordIterator
{
static_assert(is_congruent<Coord, Shape>::value);
CUTE_HOST_DEVICE constexpr
Coord const& operator*() const { return coord; }
CUTE_HOST_DEVICE constexpr
ForwardCoordIterator& operator++() { detail::increment(coord, shape); return *this; }
// Sentinel for the end of the implied range
CUTE_HOST_DEVICE constexpr
bool operator< (ForwardCoordIteratorSentinal const&) const { return back(coord) < back(shape); }
CUTE_HOST_DEVICE constexpr
bool operator==(ForwardCoordIteratorSentinal const&) const { return back(coord) == back(shape); }
CUTE_HOST_DEVICE constexpr
bool operator!=(ForwardCoordIteratorSentinal const&) const { return back(coord) != back(shape); }
// NOTE: These are expensive, avoid use
CUTE_HOST_DEVICE constexpr
bool operator< (ForwardCoordIterator const& other) const { return colex_less(coord, other.coord); }
CUTE_HOST_DEVICE constexpr
bool operator==(ForwardCoordIterator const& other) const { return coord == other.coord; }
CUTE_HOST_DEVICE constexpr
bool operator!=(ForwardCoordIterator const& other) const { return coord != other.coord; }
Coord coord;
Shape const& shape;
};
// A forward iterator for a coordinate that starts from a provided coordinate
template <class Shape, class Coord>
CUTE_HOST_DEVICE constexpr
auto
make_coord_iterator(Coord const& coord, Shape const& shape)
{
return ForwardCoordIterator<Coord,Shape>{coord,shape};
}
// A forward iterator for a coordinate that starts from zero
template <class Shape>
CUTE_HOST_DEVICE constexpr
auto
make_coord_iterator(Shape const& shape)
{
auto coord = repeat_like(shape, int(0));
return make_coord_iterator(coord, shape);
}
} // end namespace cute