forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray_subbyte.hpp
634 lines (521 loc) · 17.7 KB
/
array_subbyte.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Statically sized array of elements that accommodates subbyte trivial types
in a packed storage.
*/
#pragma once
#include <cute/config.hpp>
#include <cute/numeric/numeric_types.hpp>
#include <cute/numeric/integral_constant.hpp>
namespace cute
{
//
// Underlying subbyte storage type
//
template <class T>
using subbyte_storage_type_t = conditional_t<(cute::sizeof_bits_v<T> <= 8), uint8_t,
conditional_t<(cute::sizeof_bits_v<T> <= 16), uint16_t,
conditional_t<(cute::sizeof_bits_v<T> <= 32), uint32_t,
conditional_t<(cute::sizeof_bits_v<T> <= 64), uint64_t,
conditional_t<(cute::sizeof_bits_v<T> <= 128), uint128_t,
T>>>>>;
template <class T> struct subbyte_iterator;
template <class, class> struct swizzle_ptr;
//
// subbyte_reference
// Proxy object for sub-byte element references
//
template <class T>
struct subbyte_reference
{
// Iterator Element type (const or non-const)
using element_type = T;
// Iterator Value type without type qualifier.
using value_type = remove_cv_t<T>;
// Storage type (const or non-const)
using storage_type = conditional_t<(is_const_v<T>), subbyte_storage_type_t<T> const, subbyte_storage_type_t<T>>;
static_assert(sizeof_bits_v<storage_type> % 8 == 0, "Storage type is not supported");
static_assert(sizeof_bits_v<element_type> <= sizeof_bits_v<storage_type>,
"Size of Element must not be greater than Storage.");
private:
// Bitmask for covering one item
static constexpr storage_type BitMask = storage_type(storage_type(-1) >> (sizeof_bits_v<storage_type> - sizeof_bits_v<element_type>));
// Flag for fast branching on straddled elements
static constexpr bool is_storage_unaligned = ((sizeof_bits_v<storage_type> % sizeof_bits_v<element_type>) != 0);
friend struct subbyte_iterator<T>;
// Pointer to storage element
storage_type* ptr_ = nullptr;
// Bit index of value_type starting position within storage_type element.
// RI: 0 <= idx_ < sizeof_bit<storage_type>
uint8_t idx_ = 0;
// Ctor
template <class PointerType>
CUTE_HOST_DEVICE constexpr
subbyte_reference(PointerType* ptr, uint8_t idx = 0) : ptr_(reinterpret_cast<storage_type*>(ptr)), idx_(idx) {}
public:
// Copy Ctor
CUTE_HOST_DEVICE constexpr
subbyte_reference(subbyte_reference const& other) {
*this = element_type(other);
}
// Copy Assignment
CUTE_HOST_DEVICE constexpr
subbyte_reference& operator=(subbyte_reference const& other) {
return *this = element_type(other);
}
// Assignment
template <class T_ = element_type>
CUTE_HOST_DEVICE constexpr
enable_if_t<!is_const_v<T_>, subbyte_reference&> operator=(element_type x)
{
static_assert(is_same_v<T_, element_type>, "Do not specify template arguments!");
storage_type item = (reinterpret_cast<storage_type const&>(x) & BitMask);
// Update the current storage element
storage_type bit_mask_0 = storage_type(BitMask << idx_);
ptr_[0] = storage_type((ptr_[0] & ~bit_mask_0) | (item << idx_));
// If value_type is unaligned with storage_type (static) and this is a straddled value (dynamic)
if (is_storage_unaligned && idx_ + sizeof_bits_v<value_type> > sizeof_bits_v<storage_type>) {
uint8_t straddle_bits = uint8_t(sizeof_bits_v<storage_type> - idx_);
storage_type bit_mask_1 = storage_type(BitMask >> straddle_bits);
// Update the next storage element
ptr_[1] = storage_type((ptr_[1] & ~bit_mask_1) | (item >> straddle_bits));
}
return *this;
}
// Comparison of referenced values
CUTE_HOST_DEVICE constexpr friend
bool operator==(subbyte_reference const& x, subbyte_reference const& y) { return x.get() == y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator!=(subbyte_reference const& x, subbyte_reference const& y) { return x.get() != y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator< (subbyte_reference const& x, subbyte_reference const& y) { return x.get() < y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator> (subbyte_reference const& x, subbyte_reference const& y) { return x.get() > y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator<=(subbyte_reference const& x, subbyte_reference const& y) { return x.get() <= y.get(); }
CUTE_HOST_DEVICE constexpr friend
bool operator>=(subbyte_reference const& x, subbyte_reference const& y) { return x.get() >= y.get(); }
// Value
CUTE_HOST_DEVICE
element_type get() const
{
if constexpr (is_same_v<bool, value_type>) { // Extract to bool -- potentially faster impl
return bool((*ptr_) & (BitMask << idx_));
} else { // Extract to element_type
// Extract from the current storage element
auto item = storage_type((ptr_[0] >> idx_) & BitMask);
// If value_type is unaligned with storage_type (static) and this is a straddled value (dynamic)
if (is_storage_unaligned && idx_ + sizeof_bits_v<value_type> > sizeof_bits_v<storage_type>) {
uint8_t straddle_bits = uint8_t(sizeof_bits_v<storage_type> - idx_);
storage_type bit_mask_1 = storage_type(BitMask >> straddle_bits);
// Extract from the next storage element
item |= storage_type((ptr_[1] & bit_mask_1) << straddle_bits);
}
return reinterpret_cast<element_type&>(item);
}
}
// Extract to type element_type
CUTE_HOST_DEVICE constexpr
operator element_type() const {
return get();
}
// Address
subbyte_iterator<T> operator&() const {
return {ptr_, idx_};
}
};
//
// subbyte_iterator
// Random-access iterator over subbyte references
//
template <class T>
struct subbyte_iterator
{
// Iterator Element type (const or non-const)
using element_type = T;
// Iterator Value type without type qualifier.
using value_type = remove_cv_t<T>;
// Storage type (const or non-const)
using storage_type = conditional_t<(is_const_v<T>), subbyte_storage_type_t<T> const, subbyte_storage_type_t<T>>;
// Reference proxy type
using reference = subbyte_reference<element_type>;
static_assert(sizeof_bits_v<storage_type> % 8 == 0, "Storage type is not supported");
static_assert(sizeof_bits_v<element_type> <= sizeof_bits_v<storage_type>,
"Size of Element must not be greater than Storage.");
private:
template <class, class> friend struct swizzle_ptr;
// Pointer to storage element
storage_type* ptr_ = nullptr;
// Bit index of value_type starting position within storage_type element.
// RI: 0 <= idx_ < sizeof_bit<storage_type>
uint8_t idx_ = 0;
public:
// Ctor
subbyte_iterator() = default;
// Ctor
template <class PointerType>
CUTE_HOST_DEVICE constexpr
subbyte_iterator(PointerType* ptr, uint8_t idx = 0) : ptr_(reinterpret_cast<storage_type*>(ptr)), idx_(idx) { }
CUTE_HOST_DEVICE constexpr
reference operator*() const {
return reference(ptr_, idx_);
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator& operator+=(uint64_t k) {
k = sizeof_bits_v<value_type> * k + idx_;
ptr_ += k / sizeof_bits_v<storage_type>;
idx_ = k % sizeof_bits_v<storage_type>;
return *this;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator operator+(uint64_t k) const {
return subbyte_iterator(ptr_, idx_) += k;
}
CUTE_HOST_DEVICE constexpr
reference operator[](uint64_t k) const {
return *(*this + k);
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator& operator++() {
idx_ += sizeof_bits_v<value_type>;
if (idx_ >= sizeof_bits_v<storage_type>) {
++ptr_;
idx_ -= sizeof_bits_v<storage_type>;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator operator++(int) {
subbyte_iterator ret(*this);
++(*this);
return ret;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator& operator--() {
if (idx_ >= sizeof_bits_v<value_type>) {
idx_ -= sizeof_bits_v<value_type>;
} else {
--ptr_;
idx_ += sizeof_bits_v<storage_type> - sizeof_bits_v<value_type>;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
subbyte_iterator operator--(int) {
subbyte_iterator ret(*this);
--(*this);
return ret;
}
CUTE_HOST_DEVICE constexpr friend
bool operator==(subbyte_iterator const& x, subbyte_iterator const& y) {
return x.ptr_ == y.ptr_ && x.idx_ == y.idx_;
}
CUTE_HOST_DEVICE constexpr friend
bool operator< (subbyte_iterator const& x, subbyte_iterator const& y) {
return x.ptr_ < y.ptr_ || (x.ptr_ == y.ptr_ && x.idx_ < y.idx_);
}
CUTE_HOST_DEVICE constexpr friend
bool operator!=(subbyte_iterator const& x, subbyte_iterator const& y) { return !(x == y); }
CUTE_HOST_DEVICE constexpr friend
bool operator<=(subbyte_iterator const& x, subbyte_iterator const& y) { return !(y < x); }
CUTE_HOST_DEVICE constexpr friend
bool operator> (subbyte_iterator const& x, subbyte_iterator const& y) { return (y < x); }
CUTE_HOST_DEVICE constexpr friend
bool operator>=(subbyte_iterator const& x, subbyte_iterator const& y) { return !(x < y); }
// Conversion to raw pointer with loss of subbyte index
CUTE_HOST_DEVICE constexpr friend
T* raw_pointer_cast(subbyte_iterator const& x) {
assert(x.idx_ == 0);
return reinterpret_cast<T*>(x.ptr_);
}
// Conversion to NewT_ with possible loss of subbyte index
template <class NewT_>
CUTE_HOST_DEVICE constexpr friend
auto recast_ptr(subbyte_iterator const& x) {
using NewT = conditional_t<(is_const_v<T>), NewT_ const, NewT_>;
if constexpr (cute::is_subbyte_v<NewT>) { // Making subbyte_iter, preserve the subbyte idx
return subbyte_iterator<NewT>(x.ptr_, x.idx_);
} else { // Not subbyte, assume/assert subbyte idx 0
return reinterpret_cast<NewT*>(raw_pointer_cast(x));
}
CUTE_GCC_UNREACHABLE;
}
CUTE_HOST_DEVICE friend void print(subbyte_iterator x) {
printf("subptr[%db](%p.%u)", int(sizeof_bits_v<T>), x.ptr_, x.idx_);
}
};
//
// array_subbyte
// Statically sized array for non-byte-aligned data types
//
template <class T, size_t N>
struct array_subbyte
{
using element_type = T;
using value_type = remove_cv_t<T>;
using pointer = element_type*;
using const_pointer = element_type const*;
using size_type = size_t;
using difference_type = ptrdiff_t;
//
// References
//
using reference = subbyte_reference<element_type>;
using const_reference = subbyte_reference<element_type const>;
//
// Iterators
//
using iterator = subbyte_iterator<element_type>;
using const_iterator = subbyte_iterator<element_type const>;
// Storage type (const or non-const)
using storage_type = conditional_t<(is_const_v<T>), subbyte_storage_type_t<T> const, subbyte_storage_type_t<T>>;
static_assert(sizeof_bits_v<storage_type> % 8 == 0, "Storage type is not supported");
private:
// Number of storage elements, ceil_div
static constexpr size_type StorageElements = (N * sizeof_bits_v<value_type> + sizeof_bits_v<storage_type> - 1) / sizeof_bits_v<storage_type>;
// Internal storage
storage_type storage[StorageElements];
public:
constexpr
array_subbyte() = default;
CUTE_HOST_DEVICE constexpr
array_subbyte(array_subbyte const& x) {
CUTE_UNROLL
for (size_type i = 0; i < StorageElements; ++i) {
storage[i] = x.storage[i];
}
}
CUTE_HOST_DEVICE constexpr
size_type size() const {
return N;
}
CUTE_HOST_DEVICE constexpr
size_type max_size() const {
return N;
}
CUTE_HOST_DEVICE constexpr
bool empty() const {
return !N;
}
// Efficient clear method
CUTE_HOST_DEVICE constexpr
void clear() {
CUTE_UNROLL
for (size_type i = 0; i < StorageElements; ++i) {
storage[i] = storage_type(0);
}
}
CUTE_HOST_DEVICE constexpr
void fill(T const& value) {
CUTE_UNROLL
for (size_type i = 0; i < N; ++i) {
at(i) = value;
}
}
CUTE_HOST_DEVICE constexpr
reference at(size_type pos) {
return iterator(storage)[pos];
}
CUTE_HOST_DEVICE constexpr
const_reference at(size_type pos) const {
return const_iterator(storage)[pos];
}
CUTE_HOST_DEVICE constexpr
reference operator[](size_type pos) {
return at(pos);
}
CUTE_HOST_DEVICE constexpr
const_reference operator[](size_type pos) const {
return at(pos);
}
CUTE_HOST_DEVICE constexpr
reference front() {
return at(0);
}
CUTE_HOST_DEVICE constexpr
const_reference front() const {
return at(0);
}
CUTE_HOST_DEVICE constexpr
reference back() {
return at(N-1);
}
CUTE_HOST_DEVICE constexpr
const_reference back() const {
return at(N-1);
}
CUTE_HOST_DEVICE constexpr
pointer data() {
return reinterpret_cast<pointer>(storage);
}
CUTE_HOST_DEVICE constexpr
const_pointer data() const {
return reinterpret_cast<const_pointer>(storage);
}
CUTE_HOST_DEVICE constexpr
storage_type* raw_data() {
return storage;
}
CUTE_HOST_DEVICE constexpr
storage_type const* raw_data() const {
return storage;
}
CUTE_HOST_DEVICE constexpr
iterator begin() {
return iterator(storage);
}
CUTE_HOST_DEVICE constexpr
const_iterator begin() const {
return const_iterator(storage);
}
CUTE_HOST_DEVICE constexpr
const_iterator cbegin() const {
return begin();
}
CUTE_HOST_DEVICE constexpr
iterator end() {
return iterator(storage) + N;
}
CUTE_HOST_DEVICE constexpr
const_iterator end() const {
return const_iterator(storage) + N;
}
CUTE_HOST_DEVICE constexpr
const_iterator cend() const {
return end();
}
//
// Comparison operators
//
};
//
// Operators
//
template <class T, size_t N>
CUTE_HOST_DEVICE constexpr
void clear(array_subbyte<T,N>& a)
{
a.clear();
}
template <class T, size_t N>
CUTE_HOST_DEVICE constexpr
void fill(array_subbyte<T,N>& a, T const& value)
{
a.fill(value);
}
} // namespace cute
//
// Specialize tuple-related functionality for cute::array_subbyte
//
#if defined(__CUDACC_RTC__)
#include <cuda/std/tuple>
#else
#include <tuple>
#endif
namespace cute
{
template <size_t I, class T, size_t N>
CUTE_HOST_DEVICE constexpr
T& get(array_subbyte<T,N>& a)
{
static_assert(I < N, "Index out of range");
return a[I];
}
template <size_t I, class T, size_t N>
CUTE_HOST_DEVICE constexpr
T const& get(array_subbyte<T,N> const& a)
{
static_assert(I < N, "Index out of range");
return a[I];
}
template <size_t I, class T, size_t N>
CUTE_HOST_DEVICE constexpr
T&& get(array_subbyte<T,N>&& a)
{
static_assert(I < N, "Index out of range");
return cute::move(a[I]);
}
} // end namespace cute
namespace CUTE_STL_NAMESPACE
{
template <class T>
struct is_reference<cute::subbyte_reference<T>>
: CUTE_STL_NAMESPACE::true_type
{};
template <class T, size_t N>
struct tuple_size<cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, cute::array_subbyte<T,N>>
{
using type = T;
};
template <class T, size_t N>
struct tuple_size<const cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, const cute::array_subbyte<T,N>>
{
using type = T;
};
} // end namespace CUTE_STL_NAMESPACE
#ifdef CUTE_STL_NAMESPACE_IS_CUDA_STD
namespace std
{
#if defined(__CUDACC_RTC__)
template <class... _Tp>
struct tuple_size;
template <size_t _Ip, class... _Tp>
struct tuple_element;
#endif
template <class T, size_t N>
struct tuple_size<cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, cute::array_subbyte<T,N>>
{
using type = T;
};
template <class T, size_t N>
struct tuple_size<const cute::array_subbyte<T,N>>
: CUTE_STL_NAMESPACE::integral_constant<size_t, N>
{};
template <size_t I, class T, size_t N>
struct tuple_element<I, const cute::array_subbyte<T,N>>
{
using type = T;
};
} // end namespace std
#endif // CUTE_STL_NAMESPACE_IS_CUDA_STD