forked from JaninaBistron/GeoGamiNMRAssessment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SensAnalysis_ParameterOpt.R
255 lines (210 loc) · 11.3 KB
/
SensAnalysis_ParameterOpt.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# Parameter Optimization for Sensitivity Analysis on the thresholds (for accuracy and process data)
# Under construction!!!
# Libraries --------------------------------------------------------------------------------------------------------
library("tidyverse")
library("lubridate")
library("data.table")
library("rgdal")
library("sf")
library("sp")
library("psych")
library("GA")
# Load files -------------------------------------------------------------------------------------------------------
# choose location
location = "Senden"
#location = "Duelmen"
if (location == "Senden"){
load("results/senden/raw_data.Rda")
load("results/senden/taskperformance_loc.Rda")
load("results/senden/taskperformance_dir.Rda")
} else {
load("results/duelmen/raw_data.Rda")
load("results/duelmen/taskperformance_loc.Rda")
load("results/duelmen/taskperformance_dir.Rda")
}
participants <- nrow(logfile)
# Create functions -------------------------------------------------------------------------------------------------
# For determining the mean of reliability and validity coefficient (for all tasks incl. process data)
RelValCalc <- function(x) {
LOClimit <- x[1]
locpanlimit <- x[2]
loczoomlimit <- x[3]
LNVlimit <- x[4]
lnvroutefactor <- x[5]
DMlimit <- x[6]
DAlimit <- x[7]
daturnlimit <- x[8]
# calculate reliability and validity
source("calculations/1_data_and_scoring/06_score_loctasks.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/07_score_loc.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/08_score_lnv.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/09_score_dirtasks.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/10_score_dm.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/11_score_da.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/01_cronbachsalpha_itemtotal.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/02_taskdifficulty.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/03_splithalfreliability.R", encoding="utf-8", local = TRUE)
source("calculations/3_testeval_scoredistrib_validity/01_totalscores.R", encoding="utf-8", local = TRUE)
source("calculations/3_testeval_scoredistrib_validity/02_validity.R", encoding="utf-8", local = TRUE)
rel_val <- (rel_Totalc + cor_valid_total_c) / 2
return(rel_val)
}
# For determining one minus the mean of reliability and validity coefficient (for all tasks incl. process data)
RelValCalc_min <- function(x) {
rel_val = 1 - RelValCalc (x)
return(rel_val)
}
# For determining the reliability coefficient (for all tasks incl. process data)
RelCalc <- function(x) {
LOClimit <- x[1]
locpanlimit <- x[2]
loczoomlimit <- x[3]
LNVlimit <- x[4]
lnvroutefactor <- x[5]
DMlimit <- x[6]
DAlimit <- x[7]
daturnlimit <- x[8]
# calculate reliability and validity
source("calculations/1_data_and_scoring/06_score_loctasks.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/07_score_loc.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/08_score_lnv.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/09_score_dirtasks.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/10_score_dm.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/11_score_da.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/01_cronbachsalpha_itemtotal.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/02_taskdifficulty.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/03_splithalfreliability.R", encoding="utf-8", local = TRUE)
source("calculations/3_testeval_scoredistrib_validity/01_totalscores.R", encoding="utf-8", local = TRUE)
source("calculations/3_testeval_scoredistrib_validity/02_validity.R", encoding="utf-8", local = TRUE)
rel <- rel_Totalc
return(rel)
}
# For determining one minus the reliability coefficient (for all tasks incl. process data)
RelCalc_min <- function(x) {
rel = 1 - RelCalc (x)
return(rel)
}
# For determining the validity coefficient (for all tasks incl. process data)
ValCalc <- function(x) {
LOClimit <- x[1]
locpanlimit <- x[2]
loczoomlimit <- x[3]
LNVlimit <- x[4]
lnvroutefactor <- x[5]
DMlimit <- x[6]
DAlimit <- x[7]
daturnlimit <- x[8]
# calculate reliability and validity
source("calculations/1_data_and_scoring/06_score_loctasks.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/07_score_loc.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/08_score_lnv.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/09_score_dirtasks.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/10_score_dm.R", encoding="utf-8", local = TRUE)
source("calculations/1_data_and_scoring/11_score_da.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/01_cronbachsalpha_itemtotal.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/02_taskdifficulty.R", encoding="utf-8", local = TRUE)
source("calculations/2_testeval_items_reliability/03_splithalfreliability.R", encoding="utf-8", local = TRUE)
source("calculations/3_testeval_scoredistrib_validity/01_totalscores.R", encoding="utf-8", local = TRUE)
source("calculations/3_testeval_scoredistrib_validity/02_validity.R", encoding="utf-8", local = TRUE)
val <- cor_valid_total_c
return(val)
}
# For determining one minus the validity coefficient (for all tasks incl. process data)
ValCalc_min <- function(x) {
val = 1 - ValCalc (x)
return(val)
}
# Parameter Optimization -------------------------------------------------------------------------------------------
# suggested optimal thresholds (for max. reliability and validity coefficients)
LOClimit_sug <- 10
locpanlimit_sug <- 25
loczoomlimit_sug <- 10
LNVlimit_sug <- 5
lnvroutefactor_sug <- 2
DMlimit_sug <- 25
DAlimit_sug <- 25
daturnlimit_sug <- 500
suggestedThres <- matrix(c(LOClimit_sug,locpanlimit_sug,loczoomlimit_sug,LNVlimit_sug,lnvroutefactor_sug,DMlimit_sug,DAlimit_sug,daturnlimit_sug), nrow = 1, ncol = 8, byrow = TRUE)
# suggested sub-optimal thresholds (for min. reliability and validity coefficients)
LOClimit_sug_min <- 20
locpanlimit_sug_min <- 40
loczoomlimit_sug_min <- 40
LNVlimit_sug_min <- 20
lnvroutefactor_sug_min <- 2
DMlimit_sug_min <- 5
DAlimit_sug_min <- 5
daturnlimit_sug_min <- 1200
suggestedThres_min <- matrix(c(LOClimit_sug_min,locpanlimit_sug_min,loczoomlimit_sug_min,LNVlimit_sug_min,lnvroutefactor_sug_min,DMlimit_sug_min,DAlimit_sug_min,daturnlimit_sug_min), nrow = 1, ncol = 8, byrow = TRUE)
# genetic algorithms (see: https://cran.r-project.org/web/packages/GA/vignettes/GA.html)
# for the mean of reliability and validity coefficient
GA_RelVal_max <- ga(type = "real-valued", # max. coefficients
fitness = RelValCalc,
lower = c(5, 5, 5, 5, 2, 5, 5, 200), upper = c(20, 40, 40, 20, 5, 30, 30, 1200),
suggestions = suggestedThres,
popSize = 50, maxiter = 100)
GA_RelVal_min <- ga(type = "real-valued", # min. coefficients
fitness = RelValCalc_min,
lower = c(5, 5, 5, 5, 2, 5, 5, 200), upper = c(20, 40, 40, 20, 5, 30, 30, 1200),
suggestions = suggestedThres_min,
popSize = 50, maxiter = 100)
# for reliability coefficient
GA_Rel_max <- ga(type = "real-valued", # max. coefficients
fitness = RelCalc,
lower = c(5, 5, 5, 5, 2, 5, 5, 200), upper = c(20, 40, 40, 20, 5, 30, 30, 1200),
suggestions = suggestedThres,
popSize = 50, maxiter = 100)
GA_Rel_min <- ga(type = "real-valued", # min. coefficients
fitness = RelCalc_min,
lower = c(5, 5, 5, 5, 2, 5, 5, 200), upper = c(20, 40, 40, 20, 5, 30, 30, 1200),
suggestions = suggestedThres_min,
popSize = 50, maxiter = 100)
# for validity coefficient
GA_Val_max <- ga(type = "real-valued", # max. coefficients
fitness = ValCalc,
lower = c(5, 5, 5, 5, 2, 5, 5, 200), upper = c(20, 40, 40, 20, 5, 30, 30, 1200),
suggestions = suggestedThres,
popSize = 50, maxiter = 100)
GA_Val_min <- ga(type = "real-valued", # min. coefficients
fitness = ValCalc_min,
lower = c(5, 5, 5, 5, 2, 5, 5, 200), upper = c(20, 40, 40, 20, 5, 30, 30, 1200),
suggestions = suggestedThres_min,
popSize = 50, maxiter = 100)
# show results of parameter optimization
summary(GA_RelVal_max)
plot(GA_RelVal_max, main="Approx. of max. mean of reliability & validity coefficient")
summary(GA_RelVal_min)
plot(GA_RelVal_min, main="Approx. of min. mean of reliability & validity coefficient")
summary(GA_Rel_max)
plot(GA_Rel_max, main="Approx. of max. reliability coefficient")
summary(GA_Rel_min)
plot(GA_Rel_min, main="Approx. of min. reliability coefficient")
summary(GA_Val_max)
plot(GA_Val_max, main="Approx. of max. validity coefficient")
summary(GA_Val_min)
plot(GA_Val_min, main="Approx. of min.validity coefficients")
# Save Files -------------------------------------------------------------------------------------------------------
# files on the parameter optimization can be found in the results folder of the project
if(location=="Senden"){
save(GA_RelVal_max,file="results/senden/sensanalysis/relval_max.Rda")
save(GA_Rel_max,file="results/senden/sensanalysis/rel_max.Rda")
save(GA_Val_max,file="results/senden/sensanalysis/val_max.Rda")
save(GA_RelVal_min,file="results/senden/sensanalysis/relval_min.Rda")
save(GA_Rel_min,file="results/senden/sensanalysis/rel_min.Rda")
save(GA_Val_min,file="results/senden/sensanalysis/val_min.Rda")
} else {
if(location=="Duelmen"){
save(GA_RelVal_max,file="results/duelmen/sensanalysis/relval_max.Rda")
save(GA_Rel_max,file="results/duelmen/sensanalysis/rel_max.Rda")
save(GA_Val_max,file="results/duelmen/sensanalysis/val_max.Rda")
save(GA_RelVal_min,file="results/duelmen/sensanalysis/relval_min.Rda")
save(GA_Rel_min,file="results/duelmen/sensanalysis/rel_min.Rda")
save(GA_Val_min,file="results/duelmen/sensanalysis/val_min.Rda")
} else {
save(GA_RelVal_max,file="results/custom/sensanalysis/relval_max.Rda")
save(GA_Rel_max,file="results/custom/sensanalysis/rel_max.Rda")
save(GA_Val_max,file="results/custom/sensanalysis/val_max.Rda")
save(GA_RelVal_min,file="results/custom/sensanalysis/relval_min.Rda")
save(GA_Rel_min,file="results/custom/sensanalysis/rel_min.Rda")
save(GA_Val_min,file="results/custom/sensanalysis/ral_min.Rda")
}
}