-
Notifications
You must be signed in to change notification settings - Fork 902
/
example_16-01.cpp
107 lines (98 loc) · 4.21 KB
/
example_16-01.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
// Example 16-1. Pyramid L-K optical flow
//
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
static const int MAX_CORNERS = 1000;
using std::cout;
using std::endl;
using std::vector;
void help( char** argv ) {
cout << "\nExample 16-1: Pyramid L-K optical flow example.\n" << endl;
cout << "Call: " <<argv[0] <<" [image1] [image2]\n" << endl;
cout << "\nExample:\n" << argv[0] << " ../example_16-01-imgA.png ../example_16-01-imgB.png\n" << endl;
cout << "Demonstrates Pyramid Lucas-Kanade optical flow.\n" << endl;
}
int main(int argc, char** argv) {
if (argc != 3) {
help(argv);
exit(-1);
}
// Initialize, load two images from the file system, and
// allocate the images and other structures we will need for
// results.
//
cv::Mat imgA = cv::imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
cv::Mat imgB = cv::imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);
cv::Size img_sz = imgA.size();
int win_size = 10;
cv::Mat imgC = cv::imread(argv[2], CV_LOAD_IMAGE_UNCHANGED);
// The first thing we need to do is get the features
// we want to track.
//
vector< cv::Point2f > cornersA, cornersB;
const int MAX_CORNERS = 500;
cv::goodFeaturesToTrack(
imgA, // Image to track
cornersA, // Vector of detected corners (output)
MAX_CORNERS, // Keep up to this many corners
0.01, // Quality level (percent of maximum)
5, // Min distance between corners
cv::noArray(), // Mask
3, // Block size
false, // true: Harris, false: Shi-Tomasi
0.04 // method specific parameter
);
cv::cornerSubPix(
imgA, // Input image
cornersA, // Vector of corners (input and output)
cv::Size(win_size, win_size), // Half side length of search window
cv::Size(-1, -1), // Half side length of dead zone (-1=none)
cv::TermCriteria(
cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
20, // Maximum number of iterations
0.03 // Minimum change per iteration
)
);
// Call the Lucas Kanade algorithm
//
vector<uchar> features_found;
cv::calcOpticalFlowPyrLK(
imgA, // Previous image
imgB, // Next image
cornersA, // Previous set of corners (from imgA)
cornersB, // Next set of corners (from imgB)
features_found, // Output vector, each is 1 for tracked
cv::noArray(), // Output vector, lists errors (optional)
cv::Size(win_size * 2 + 1, win_size * 2 + 1), // Search window size
5, // Maximum pyramid level to construct
cv::TermCriteria(
cv::TermCriteria::MAX_ITER | cv::TermCriteria::EPS,
20, // Maximum number of iterations
0.3 // Minimum change per iteration
)
);
// Now make some image of what we are looking at:
// Note that if you want to track cornersB further, i.e.
// pass them as input to the next calcOpticalFlowPyrLK,
// you would need to "compress" the vector, i.e., exclude points for which
// features_found[i] == false.
for (int i = 0; i < static_cast<int>(cornersA.size()); ++i) {
if (!features_found[i]) {
continue;
}
line(
imgC, // Draw onto this image
cornersA[i], // Starting here
cornersB[i], // Ending here
cv::Scalar(0, 255, 0), // This color
1, // This many pixels wide
cv::LINE_AA // Draw line in this style
);
}
cv::imshow("ImageA", imgA);
cv::imshow("ImageB", imgB);
cv::imshow("LK Optical Flow Example", imgC);
cv::waitKey(0);
return 0;
}