-
Notifications
You must be signed in to change notification settings - Fork 177
/
rapids_simple.py
59 lines (41 loc) · 1.83 KB
/
rapids_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
"""
Optuna example using RAPIDS library for optimization.
In this example, we perform hyperparameter optimization on Iris dataset using cuML's
RandomForestClassifier. This should be used as a starting point
to extend the search for larger problems, and wider depths.
To run this example:
$ python rapids_simple.py
Learn more about rapids: https://rapids.ai/
"""
import cudf
from cuml.ensemble import RandomForestClassifier
from cuml.metrics import accuracy_score
from cuml.preprocessing.model_selection import train_test_split
import optuna
from sklearn.datasets import load_iris
def train_and_eval(X_param, y_param, max_depth=16, n_estimators=100):
X_train, X_valid, y_train, y_valid = train_test_split(X_param, y_param, random_state=77)
classifier = RandomForestClassifier(max_depth=max_depth, n_estimators=n_estimators)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_valid)
score = accuracy_score(y_valid, y_pred)
return score
def objective(trial, X_param, y_param):
max_depth = trial.suggest_int("max_depth", 7, 15)
n_estimators = trial.suggest_int("n_estimators", 100, 1000)
score = train_and_eval(X_param, y_param, max_depth=max_depth, n_estimators=n_estimators)
return score
if __name__ == "__main__":
data, target = load_iris(return_X_y=True)
# To use the GPU model
X = cudf.DataFrame(data).astype("float32")
y = cudf.Series(target)
study = optuna.create_study(study_name="rapids_experiment", direction="maximize")
study.optimize(lambda trial: objective(trial, X, y), n_trials=100)
print("Number of finished trials: {}".format(len(study.trials)))
print("Best trial:")
trial = study.best_trial
print(" Value: {}".format(trial.value))
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))