-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
176 lines (133 loc) · 4.21 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
output: github_document
always_allow_html: true
editor_options:
markdown:
wrap: 72
chunk_output_type: console
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%",
message = FALSE,
warning = FALSE,
fig.retina = 2,
fig.align = 'center'
)
```
# choleramalawi
<!-- badges: start -->
[![License: CC BY
4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.13920530.svg)](https://zenodo.org/doi/10.5281/zenodo.13920530)
<!-- badges: end -->
The goal of choleramalawi is to analyse the progress of the Cholera epidemic in Malawi (2023-24)
## Installation
You can install the development version of choleramalawi from
[GitHub](https://github.com/) with:
``` {r eval=FALSE}
# install.packages("devtools")
devtools::install_github("openwashdata/choleramalawi")
```
```{r}
## Run the following code in console if you don't have the packages
## install.packages(c("dplyr", "knitr", "readr", "stringr", "gt", "kableExtra"))
library(dplyr)
library(knitr)
library(readr)
library(stringr)
library(gt)
library(kableExtra)
library(rnaturalearth)
library(rnaturalearthdata)
library(sf)
library(RColorBrewer)
#devtools::load_all()
```
Alternatively, you can download the individual datasets as a CSV or XLSX
file from the table below.
```{r, echo=FALSE, message=FALSE, warning=FALSE}
extdata_path <- "https://github.com/openwashdata/choleramalawi/raw/main/inst/extdata/"
read_csv("data-raw/dictionary.csv") |>
distinct(file_name) |>
dplyr::mutate(file_name = str_remove(file_name, ".rda")) |>
dplyr::rename(dataset = file_name) |>
mutate(
CSV = paste0("[Download CSV](", extdata_path, dataset, ".csv)"),
XLSX = paste0("[Download XLSX](", extdata_path, dataset, ".xlsx)")
) |>
knitr::kable()
```
## Data
The package provides access to one dataset `choleramalawi`. It contains data on the progress of the cholera epidemic in each district of Malawi during 2022-23. The data focuses on cases and deaths for every week as well as cumulative cases and deaths.
```{r}
library(choleramalawi)
```
### choleramalawi
The dataset `choleramalawi` contains data about the progress of the cholera epidemic in Malawi (2022-23).
It has `r nrow(choleramalawi)` observations and `r ncol(choleramalawi)` variables
```{r}
choleramalawi |>
head(3) |>
gt::gt() |>
gt::as_raw_html()
```
For an overview of the variable names, see the following table.
```{r echo=FALSE, message=FALSE, warning=FALSE}
readr::read_csv("data-raw/dictionary.csv") |>
dplyr::filter(file_name == "choleramalawi.rda") |>
dplyr::select(variable_name:description) |>
knitr::kable() |>
kableExtra::kable_styling("striped") |>
kableExtra::scroll_box(height = "200px")
```
## Example
```{r}
library(choleramalawi)
# Top districts by total cases
choleramalawi |>
group_by(district) |>
summarise(total_cases = sum(cases, na.rm = TRUE)) |>
arrange(desc(total_cases)) |>
head(10) |>
gt() |>
as_raw_html()
```
```{r}
# Plotting the number of cases over time in Lilongwe district
library(ggplot2)
choleramalawi |>
filter(district == "Lilongwe") |>
ggplot(aes(x = week, y = cases)) +
geom_line() +
labs(title = "Number of cases over time in Lilongwe district",
x = "Week",
y = "Cases")
```
```{r}
# Plot a map of districts of Malawi colored by the number of cases
total_cases_district <- choleramalawi |>
group_by(district) |>
summarise(total_cases = sum(cases, na.rm = TRUE)) |>
mutate(total_cases = ifelse(is.na(total_cases), 0, total_cases))
malawi_map <- ne_states(country = "Malawi", returnclass = "sf")
malawi_map <- malawi_map %>%
left_join(total_cases_district, by = c("name" = "district"))
ggplot(malawi_map) +
geom_sf(aes(fill = total_cases)) +
scale_fill_viridis_c(guide="none") +
theme_void() +
labs(title = "Cholera Cases by District in Malawi")
```
## License
Data are available as
[CC-BY](https://github.com/openwashdata/choleramalawi/blob/main/LICENSE.md).
## Citation
Please cite this package using:
```{r}
citation("choleramalawi")
```