diff --git a/aws_geo_datasets.json b/aws_geo_datasets.json index d5620ec..f851723 100644 --- a/aws_geo_datasets.json +++ b/aws_geo_datasets.json @@ -11162,7 +11162,7 @@ { "Name": "NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed", "Description": "New data notifications for JPSS data, only Lambda and SQS protocols allowed", - "ARN": "arn:aws:sns:us-east-1:709902155096:NewSNPPObject", + "ARN": "arn:aws:sns:us-east-1:709902155096:NewNOAA20Object", "Region": "us-east-1", "Type": "SNS Topic", "Documentation": "https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS", @@ -11185,7 +11185,7 @@ { "Name": "NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed", "Description": "New data notifications for JPSS data, only Lambda and SQS protocols allowed", - "ARN": "arn:aws:sns:us-east-1:709902155096:NewNOAA20Object", + "ARN": "arn:aws:sns:us-east-1:709902155096:NewSNPPObject", "Region": "us-east-1", "Type": "SNS Topic", "Documentation": "https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS", @@ -13598,6 +13598,30 @@ "Host": null, "AccountRequired": null }, + { + "Name": "NREL Wind Integration National Dataset - Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications", + "Description": "Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications", + "ARN": "arn:aws:s3:::nrel-pds-wtk/bchrrr/", + "Region": "us-west-2", + "Type": "S3 Bucket", + "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", + "Contact": "wind-toolkit@nrel.gov", + "ManagedBy": "[National Renewable Energy Laboratory](https://www.nrel.gov/)", + "UpdateFrequency": "As Needed", + "License": "Creative Commons Attribution 3.0 United States License", + "Tags": [ + "aws-pds", + "environmental", + "geospatial", + "meteorological" + ], + "RequesterPays": null, + "Explore": [ + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=bchrrr%2F)" + ], + "Host": null, + "AccountRequired": null + }, { "Name": "NREL Wind Integration National Dataset - California offshore wind resource data (2000-2022) in HDF5 format", "Description": "California offshore wind resource data (2000-2022) in HDF5 format", diff --git a/aws_geo_datasets.tsv b/aws_geo_datasets.tsv index a33930d..a393525 100644 --- a/aws_geo_datasets.tsv +++ b/aws_geo_datasets.tsv @@ -412,8 +412,8 @@ NOAA Joint Polar Satellite System (JPSS) - NOAA JPSS NOAA-20 Data NOAA JPSS NOAA NOAA Joint Polar Satellite System (JPSS) - NOAA JPSS NOAA-21 Data NOAA JPSS NOAA-21 Data arn:aws:s3:::noaa-nesdis-n21-pds us-east-1 S3 Bucket https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather ['[Browse Bucket](https://noaa-nesdis-n21-pds.s3.amazonaws.com/index.html)'] NOAA Joint Polar Satellite System (JPSS) - NOAA JPSS SNPP (Suomi NPP) Data NOAA JPSS SNPP (Suomi NPP) Data arn:aws:s3:::noaa-nesdis-snpp-pds us-east-1 S3 Bucket https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather ['[Browse Bucket](https://noaa-nesdis-snpp-pds.s3.amazonaws.com/index.html)'] NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed New data notifications for JPSS data, only Lambda and SQS protocols allowed arn:aws:sns:us-east-1:709902155096:NewJPSSObject us-east-1 SNS Topic https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather -NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed New data notifications for JPSS data, only Lambda and SQS protocols allowed arn:aws:sns:us-east-1:709902155096:NewSNPPObject us-east-1 SNS Topic https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed New data notifications for JPSS data, only Lambda and SQS protocols allowed arn:aws:sns:us-east-1:709902155096:NewNOAA20Object us-east-1 SNS Topic https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather +NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed New data notifications for JPSS data, only Lambda and SQS protocols allowed arn:aws:sns:us-east-1:709902155096:NewSNPPObject us-east-1 SNS Topic https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather NOAA Joint Polar Satellite System (JPSS) - New data notifications for JPSS data, only Lambda and SQS protocols allowed New data notifications for JPSS data, only Lambda and SQS protocols allowed arn:aws:sns:us-east-1:709902155096:NewNOAA21Object us-east-1 SNS Topic https://github.com/NOAA-Big-Data-Program/bdp-data-docs/tree/main/JPSS For any questions regarding data delivery or any general questions regarding the [NOAA](http://www.noaa.gov/) New data is added as soon as it's available Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather NOAA Multi-Radar/Multi-Sensor System (MRMS) - NOAA Multi-Radar/Multi-Sensor System (MRMS) NOAA Multi-Radar/Multi-Sensor System (MRMS) arn:aws:s3:::noaa-mrms-pds us-east-1 S3 Bucket https://www.nssl.noaa.gov/projects/mrms/ For specific MRMS data questions, please reach out to the MRMS Team at mrms@noaa [NOAA](http://www.noaa.gov/) Data is delivered in real-time with a 2-minute update cycle. Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather ['[Browse Bucket](https://noaa-mrms-pds.s3.amazonaws.com/index.html)'] NOAA Multi-Radar/Multi-Sensor System (MRMS) - New data notifications for MRMS data, only Lambda and SQS protocols allowed New data notifications for MRMS data, only Lambda and SQS protocols allowed arn:aws:sns:us-east-1:123901341784:NewMRMSObject us-east-1 SNS Topic https://www.nssl.noaa.gov/projects/mrms/ For specific MRMS data questions, please reach out to the MRMS Team at mrms@noaa [NOAA](http://www.noaa.gov/) Data is delivered in real-time with a 2-minute update cycle. Open Data. There are no restrictions on the use of this data. aws-pds, agriculture, climate, meteorological, weather @@ -508,6 +508,7 @@ NREL National Solar Radiation Database - NSRDB v3 typical direct years (TDY NSRD NREL National Solar Radiation Database - NSRDB v3 typical global years (TGY NSRDB v3 typical global years (TGY arn:aws:s3:::nrel-pds-nsrdb/v3/tgy/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ nsrdb@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) Annually Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-nsrdb&prefix=v3%2Ftgy%2F)'] NREL National Solar Radiation Database - NSRDB v3 typical meteorological years (TMY NSRDB v3 typical meteorological years (TMY arn:aws:s3:::nrel-pds-nsrdb/v3/tmy/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ nsrdb@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) Annually Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-nsrdb&prefix=v3%2Ftmy%2F)'] NREL Wind Integration National Dataset - Bangladesh wind resource data (2014-2017) in HDF5 format Bangladesh wind resource data (2014-2017) in HDF5 format arn:aws:s3:::nrel-pds-wtk/bangladesh/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=bangladesh%2F)'] +NREL Wind Integration National Dataset - Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications arn:aws:s3:::nrel-pds-wtk/bchrrr/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=bchrrr%2F)'] NREL Wind Integration National Dataset - California offshore wind resource data (2000-2022) in HDF5 format California offshore wind resource data (2000-2022) in HDF5 format arn:aws:s3:::nrel-pds-wtk/now23_california/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=now23_california%2F)'] NREL Wind Integration National Dataset - Central Asia wind resource data (2015) in HDF5 format Central Asia wind resource data (2015) in HDF5 format arn:aws:s3:::nrel-pds-wtk/central_asia/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=central_asia%2F)'] NREL Wind Integration National Dataset - Data for the Eastern Wind Integration Study (2004-2006 Data for the Eastern Wind Integration Study (2004-2006 arn:aws:s3:::nrel-pds-wtk/eastern_wind/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=eastern_wind%2F)'] diff --git a/aws_open_datasets.json b/aws_open_datasets.json index af37ea7..015a831 100644 --- a/aws_open_datasets.json +++ b/aws_open_datasets.json @@ -21639,8 +21639,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Central Asia wind resource data (2015) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/central_asia/", + "Description": "India wind resource data (2014) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/india/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -21655,7 +21655,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=central_asia%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=india%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -21787,31 +21787,6 @@ "AccountRequired": null, "Host": null }, - { - "Name": "NREL Wind Integration National Dataset", - "Description": "Philippines wind resource data (2017) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/philippines/", - "Region": "us-west-2", - "Type": "S3 Bucket", - "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", - "Contact": "wind-toolkit@nrel.gov", - "ManagedBy": "[National Renewable Energy Laboratory](https://www.nrel.gov/)", - "UpdateFrequency": "As Needed", - "License": "Creative Commons Attribution 3.0 United States License", - "Tags": [ - "aws-pds", - "environmental", - "geospatial", - "meteorological" - ], - "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=philippines%2F)" - ], - "RequesterPays": null, - "ControlledAccess": null, - "AccountRequired": null, - "Host": null - }, { "Name": "NREL Wind Integration National Dataset", "Description": "NREL Wind Resource Datasets", @@ -22039,8 +22014,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Gulf of Mexico wind resource data (2000-2020) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/gulf_of_mexico/", + "Description": "Central Asia wind resource data (2015) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/central_asia/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22055,7 +22030,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=gulf_of_mexico%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=central_asia%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22064,8 +22039,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "India wind resource data (2014) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/india/", + "Description": "Philippines wind resource data (2017) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/philippines/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22080,7 +22055,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=india%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=philippines%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22114,8 +22089,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Data for the Western Wind Integration Study (2004-2006", - "ARN": "arn:aws:s3:::nrel-pds-wtk/western_wind/", + "Description": "Data for the Eastern Wind Integration Study (2004-2006", + "ARN": "arn:aws:s3:::nrel-pds-wtk/eastern_wind/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22130,7 +22105,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=western_wind%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=eastern_wind%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22139,8 +22114,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Data for the Eastern Wind Integration Study (2004-2006", - "ARN": "arn:aws:s3:::nrel-pds-wtk/eastern_wind/", + "Description": "Maine wind resource data (2000-2020) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/maine/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22155,7 +22130,32 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=eastern_wind%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=maine%2F)" + ], + "RequesterPays": null, + "ControlledAccess": null, + "AccountRequired": null, + "Host": null + }, + { + "Name": "NREL Wind Integration National Dataset", + "Description": "Data for the Western Wind Integration Study (2004-2006", + "ARN": "arn:aws:s3:::nrel-pds-wtk/western_wind/", + "Region": "us-west-2", + "Type": "S3 Bucket", + "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", + "Contact": "wind-toolkit@nrel.gov", + "ManagedBy": "[National Renewable Energy Laboratory](https://www.nrel.gov/)", + "UpdateFrequency": "As Needed", + "License": "Creative Commons Attribution 3.0 United States License", + "Tags": [ + "aws-pds", + "environmental", + "geospatial", + "meteorological" + ], + "Explore": [ + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=western_wind%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22214,8 +22214,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "South Atlantic offshore wind resource data (2000-2020) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/south_atlantic/", + "Description": "Mid Atlantic three-dimensional planetary boundary layer (3D PBL) scheme wind resource data", + "ARN": "arn:aws:s3:::nrel-pds-wtk/mid_atlantic_3d_pbl/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22230,7 +22230,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=south_atlantic)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=mid_atlantic_3d_pbl%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22239,8 +22239,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "California offshore wind resource data (2000-2022) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/now23_california/", + "Description": "South Atlantic offshore wind resource data (2000-2020) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/south_atlantic/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22255,7 +22255,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=now23_california%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=south_atlantic)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22264,8 +22264,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Mid Atlantic wind resource data with modeled wakes in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/NOW-WAKES_Mid_Atlantic/", + "Description": "California offshore wind resource data (2000-2022) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/now23_california/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22280,7 +22280,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=NOW-WAKES_Mid_Atlantic%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=now23_california%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22289,8 +22289,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Southeast Asia wind resource data v3 (2007-2021) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/seasiawind_v3/", + "Description": "Mid Atlantic wind resource data with modeled wakes in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/NOW-WAKES_Mid_Atlantic/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22305,7 +22305,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=seasiawind_v3%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=NOW-WAKES_Mid_Atlantic%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22314,8 +22314,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Mid Atlantic three-dimensional planetary boundary layer (3D PBL) scheme wind resource data", - "ARN": "arn:aws:s3:::nrel-pds-wtk/mid_atlantic_3d_pbl/", + "Description": "Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications", + "ARN": "arn:aws:s3:::nrel-pds-wtk/bchrrr/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22330,7 +22330,7 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=mid_atlantic_3d_pbl%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=bchrrr%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22414,8 +22414,8 @@ }, { "Name": "NREL Wind Integration National Dataset", - "Description": "Maine wind resource data (2000-2020) in HDF5 format", - "ARN": "arn:aws:s3:::nrel-pds-wtk/maine/", + "Description": "Southeast Asia wind resource data v3 (2007-2021) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/seasiawind_v3/", "Region": "us-west-2", "Type": "S3 Bucket", "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", @@ -22430,7 +22430,32 @@ "meteorological" ], "Explore": [ - "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=maine%2F)" + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=seasiawind_v3%2F)" + ], + "RequesterPays": null, + "ControlledAccess": null, + "AccountRequired": null, + "Host": null + }, + { + "Name": "NREL Wind Integration National Dataset", + "Description": "Gulf of Mexico wind resource data (2000-2020) in HDF5 format", + "ARN": "arn:aws:s3:::nrel-pds-wtk/gulf_of_mexico/", + "Region": "us-west-2", + "Type": "S3 Bucket", + "Documentation": "https://www.nrel.gov/grid/wind-toolkit.html", + "Contact": "wind-toolkit@nrel.gov", + "ManagedBy": "[National Renewable Energy Laboratory](https://www.nrel.gov/)", + "UpdateFrequency": "As Needed", + "License": "Creative Commons Attribution 3.0 United States License", + "Tags": [ + "aws-pds", + "environmental", + "geospatial", + "meteorological" + ], + "Explore": [ + "[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=gulf_of_mexico%2F)" ], "RequesterPays": null, "ControlledAccess": null, @@ -22666,8 +22691,8 @@ }, { "Name": "National Cancer Institute Imaging Data Commons (IDC) Collections", - "Description": "Second bucket containing de-identified imaging data files in DICOM format distributed under CC-BY license This bucket is updated with each new IDC release, while maintaining the versioning of the previous releases, as described in the IDC Data versioning documentation The content of the buckets is organized", - "ARN": "arn:aws:s3:::idc-open-data-two", + "Description": "De-identified imaging data files in DICOM format distributed under CC-NC license Files in this bucket are covered by This bucket is updated with each new IDC release, while maintaining the versioning of the previous releases, as described in the IDC Data versioning documentation The content of the buckets is organized", + "ARN": "arn:aws:s3:::idc-open-data-cr", "Region": "us-east-1", "Type": "S3 Bucket", "Documentation": "https://learn.canceridc.dev/", @@ -22694,8 +22719,8 @@ }, { "Name": "National Cancer Institute Imaging Data Commons (IDC) Collections", - "Description": "De-identified imaging data files in DICOM format distributed under CC-BY license This bucket is updated with each new IDC release, while maintaining the versioning of the previous releases, as described in the IDC Data versioning documentation The content of the buckets is organized", - "ARN": "arn:aws:s3:::idc-open-data", + "Description": "Second bucket containing de-identified imaging data files in DICOM format distributed under CC-BY license This bucket is updated with each new IDC release, while maintaining the versioning of the previous releases, as described in the IDC Data versioning documentation The content of the buckets is organized", + "ARN": "arn:aws:s3:::idc-open-data-two", "Region": "us-east-1", "Type": "S3 Bucket", "Documentation": "https://learn.canceridc.dev/", @@ -22722,8 +22747,8 @@ }, { "Name": "National Cancer Institute Imaging Data Commons (IDC) Collections", - "Description": "De-identified imaging data files in DICOM format distributed under CC-NC license Files in this bucket are covered by This bucket is updated with each new IDC release, while maintaining the versioning of the previous releases, as described in the IDC Data versioning documentation The content of the buckets is organized", - "ARN": "arn:aws:s3:::idc-open-data-cr", + "Description": "De-identified imaging data files in DICOM format distributed under CC-BY license This bucket is updated with each new IDC release, while maintaining the versioning of the previous releases, as described in the IDC Data versioning documentation The content of the buckets is organized", + "ARN": "arn:aws:s3:::idc-open-data", "Region": "us-east-1", "Type": "S3 Bucket", "Documentation": "https://learn.canceridc.dev/", @@ -23570,7 +23595,7 @@ }, { "Name": "ONS Open Data Portal", - "Description": "Daily stored energy per subsystem (PT-BR Energia Armazenada (EAR) di\u00e1rio por subsistema)", + "Description": "Daily affluent natural energy per basin (PT-BR Energia Natural Afluente (ENA) di\u00e1rio por bacia)", "ARN": "arn:aws:s3:::ons-aws-prod-opendata", "Region": "sa-east-1", "Type": "S3 Bucket", @@ -23586,7 +23611,7 @@ "energy" ], "Explore": [ - "[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-subsistema)" + "[Browse Dataset](https://dados.ons.org.br/dataset/ena-diario-por-bacia)" ], "RequesterPays": null, "ControlledAccess": null, @@ -24295,7 +24320,7 @@ }, { "Name": "ONS Open Data Portal", - "Description": "Daily affluent natural energy per basin (PT-BR Energia Natural Afluente (ENA) di\u00e1rio por bacia)", + "Description": "Daily stored energy per subsystem (PT-BR Energia Armazenada (EAR) di\u00e1rio por subsistema)", "ARN": "arn:aws:s3:::ons-aws-prod-opendata", "Region": "sa-east-1", "Type": "S3 Bucket", @@ -24311,7 +24336,7 @@ "energy" ], "Explore": [ - "[Browse Dataset](https://dados.ons.org.br/dataset/ena-diario-por-bacia)" + "[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-subsistema)" ], "RequesterPays": null, "ControlledAccess": null, diff --git a/aws_open_datasets.tsv b/aws_open_datasets.tsv index 2235983..66b6c26 100644 --- a/aws_open_datasets.tsv +++ b/aws_open_datasets.tsv @@ -786,13 +786,12 @@ NREL National Solar Radiation Database NSRDB v3 typical meteorological years (TM NREL National Solar Radiation Database NSRDB v3 4km x 30min data (1998-2018 arn:aws:s3:::nrel-pds-nsrdb/v3/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ nsrdb@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) Annually Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-nsrdb&prefix=v3%2F)'] NREL National Solar Radiation Database NREL Solar Radiation Datasets arn:aws:s3:::nrel-pds-nsrdb/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ nsrdb@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) Annually Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-nsrdb)'] NREL National Solar Radiation Database HSDS NSRDB domains arn:aws:s3:::nrel-pds-hsds/nrel/nsrdb/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ nsrdb@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) Annually Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-hsds&prefix=nrel%2Fnsrdb%2F)'] -NREL Wind Integration National Dataset Central Asia wind resource data (2015) in HDF5 format arn:aws:s3:::nrel-pds-wtk/central_asia/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=central_asia%2F)'] +NREL Wind Integration National Dataset India wind resource data (2014) in HDF5 format arn:aws:s3:::nrel-pds-wtk/india/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=india%2F)'] NREL Wind Integration National Dataset Techno-economic subset of the WIND Toolkit by location in netCDF arn:aws:s3:::nrel-pds-wtk/wtk-techno-economic/pywtk-data/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=wtk-techno-economic%2Fpywtk-data%2F)'] NREL Wind Integration National Dataset HSDS gridded WIND Toolkit domain arn:aws:s3:::nrel-pds-hsds/nrel/wtk-us.h5 us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-hsds&prefix=nrel%2Fwtk-us.h5%2F)'] NREL Wind Integration National Dataset Source files for wtk-us gridded (2007-2013) arn:aws:s3:::nrel-pds-wtk/wtk-us/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=wtk-us%2F)'] NREL Wind Integration National Dataset HSDS WIND domains arn:aws:s3:::nrel-pds-hsds/nrel/wtk/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-hsds&prefix=nrel%2Fwtk%2F)'] NREL Wind Integration National Dataset Vietnam wind resource data (2016-2018) in HDF5 format arn:aws:s3:::nrel-pds-wtk/vietnam/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=vietnam%2F)'] -NREL Wind Integration National Dataset Philippines wind resource data (2017) in HDF5 format arn:aws:s3:::nrel-pds-wtk/philippines/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=philippines%2F)'] NREL Wind Integration National Dataset NREL Wind Resource Datasets arn:aws:s3:::nrel-pds-wtk/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk)'] NREL Wind Integration National Dataset Source files for WIND Toolkit CONUS (2007-2014) arn:aws:s3:::nrel-pds-wtk/conus/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=conus%2F)'] NREL Wind Integration National Dataset Source files for WIND Toolkit Canada (2007-2014) arn:aws:s3:::nrel-pds-wtk/canada/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=canada%2F)'] @@ -802,22 +801,24 @@ NREL Wind Integration National Dataset Hawaii Wind Resource data for (2000-2019) NREL Wind Integration National Dataset NW Pacific Wind Resource data for (2000-2019) in HDF5 format arn:aws:s3:::nrel-pds-wtk/NW_Pacific/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=NW_Pacific%2F)'] NREL Wind Integration National Dataset Mid Atlantic Wind Resource data for (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/Mid_Atlantic/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=Mid_Atlantic%2F)'] NREL Wind Integration National Dataset Bangladesh wind resource data (2014-2017) in HDF5 format arn:aws:s3:::nrel-pds-wtk/bangladesh/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=bangladesh%2F)'] -NREL Wind Integration National Dataset Gulf of Mexico wind resource data (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/gulf_of_mexico/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=gulf_of_mexico%2F)'] -NREL Wind Integration National Dataset India wind resource data (2014) in HDF5 format arn:aws:s3:::nrel-pds-wtk/india/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=india%2F)'] +NREL Wind Integration National Dataset Central Asia wind resource data (2015) in HDF5 format arn:aws:s3:::nrel-pds-wtk/central_asia/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=central_asia%2F)'] +NREL Wind Integration National Dataset Philippines wind resource data (2017) in HDF5 format arn:aws:s3:::nrel-pds-wtk/philippines/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=philippines%2F)'] NREL Wind Integration National Dataset Kazakhstan wind resource data (2015) in HDF5 format arn:aws:s3:::nrel-pds-wtk/kazakhstan/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=kazakhstan%2F)'] -NREL Wind Integration National Dataset Data for the Western Wind Integration Study (2004-2006 arn:aws:s3:::nrel-pds-wtk/western_wind/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=western_wind%2F)'] NREL Wind Integration National Dataset Data for the Eastern Wind Integration Study (2004-2006 arn:aws:s3:::nrel-pds-wtk/eastern_wind/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=eastern_wind%2F)'] +NREL Wind Integration National Dataset Maine wind resource data (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/maine/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=maine%2F)'] +NREL Wind Integration National Dataset Data for the Western Wind Integration Study (2004-2006 arn:aws:s3:::nrel-pds-wtk/western_wind/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=western_wind%2F)'] NREL Wind Integration National Dataset Great Lakes wind resource data (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/Great_Lakes/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=Great_Lakes%2F)'] NREL Wind Integration National Dataset Philippines typical meteorological year data in HDF5 format arn:aws:s3:::nrel-pds-wtk/philippines_tmy/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=philippines_tmy%2F)'] +NREL Wind Integration National Dataset Mid Atlantic three-dimensional planetary boundary layer (3D PBL) scheme wind res arn:aws:s3:::nrel-pds-wtk/mid_atlantic_3d_pbl/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=mid_atlantic_3d_pbl%2F)'] NREL Wind Integration National Dataset South Atlantic offshore wind resource data (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/south_atlantic/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=south_atlantic)'] NREL Wind Integration National Dataset California offshore wind resource data (2000-2022) in HDF5 format arn:aws:s3:::nrel-pds-wtk/now23_california/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=now23_california%2F)'] NREL Wind Integration National Dataset Mid Atlantic wind resource data with modeled wakes in HDF5 format arn:aws:s3:::nrel-pds-wtk/NOW-WAKES_Mid_Atlantic/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=NOW-WAKES_Mid_Atlantic%2F)'] -NREL Wind Integration National Dataset Southeast Asia wind resource data v3 (2007-2021) in HDF5 format arn:aws:s3:::nrel-pds-wtk/seasiawind_v3/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=seasiawind_v3%2F)'] -NREL Wind Integration National Dataset Mid Atlantic three-dimensional planetary boundary layer (3D PBL) scheme wind res arn:aws:s3:::nrel-pds-wtk/mid_atlantic_3d_pbl/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=mid_atlantic_3d_pbl%2F)'] +NREL Wind Integration National Dataset Bias Corrected NOAA HRRR Wind Resource Data for Grid Integration Applications arn:aws:s3:::nrel-pds-wtk/bchrrr/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=bchrrr%2F)'] NREL Wind Integration National Dataset Southeast Asia wind resource data v2 (2007-2021) in HDF5 format arn:aws:s3:::nrel-pds-wtk/seasiawind_v2/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=seasiawind_v2%2F)'] NREL Wind Integration National Dataset Southeast Asia wind resource data (2017-2021) in HDF5 format arn:aws:s3:::nrel-pds-wtk/seasiawind/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=seasiawind%2F)'] NREL Wind Integration National Dataset Puerto Rico wind resource data (2001-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/pr100/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=pr100%2F)'] -NREL Wind Integration National Dataset Maine wind resource data (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/maine/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=maine%2F)'] +NREL Wind Integration National Dataset Southeast Asia wind resource data v3 (2007-2021) in HDF5 format arn:aws:s3:::nrel-pds-wtk/seasiawind_v3/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=seasiawind_v3%2F)'] +NREL Wind Integration National Dataset Gulf of Mexico wind resource data (2000-2020) in HDF5 format arn:aws:s3:::nrel-pds-wtk/gulf_of_mexico/ us-west-2 S3 Bucket https://www.nrel.gov/grid/wind-toolkit.html wind-toolkit@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As Needed Creative Commons Attribution 3.0 United States License aws-pds, environmental, geospatial, meteorological ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-wtk&prefix=gulf_of_mexico%2F)'] NSF NCAR Curated ECMWF Reanalysis 5 (ERA5) ERA5 NetCDF4 Data Files arn:aws:s3:::nsf-ncar-era5 us-west-2 S3 Bucket https://doi.org/10.5065/BH6N-5N20 rdahelp@ucar.edu [NSF National Center for Atmospheric Research](https://ncar.ucar.edu/) Monthly, with a 3-4 month lag from realtime https://www.ucar.edu/terms-of-use/data climate, model, atmosphere, land, data assimilation, forecast, meteorological, weather, geoscience, geospatial, aws-pds, netcdf ['[Browse Bucket](https://nsf-ncar-era5.s3.amazonaws.com/index.html)'] NSF NCAR Curated ECMWF Reanalysis 5 (ERA5) Notifications for the NSF NCAR ERA5 bucket arn:aws:sns:us-west-2:891377163634:nsf-ncar-era5-object_created us-west-2 SNS Topic https://doi.org/10.5065/BH6N-5N20 rdahelp@ucar.edu [NSF National Center for Atmospheric Research](https://ncar.ucar.edu/) Monthly, with a 3-4 month lag from realtime https://www.ucar.edu/terms-of-use/data climate, model, atmosphere, land, data assimilation, forecast, meteorological, weather, geoscience, geospatial, aws-pds, netcdf NYU Langone & FAIR FastMRI Dataset Raw k-space data and DICOM files for a knee and brain dataset in a public S3 buc arn:aws:s3:::fastmri-dataset us-east-1 S3 Bucket https://fastmri.med.nyu.edu/ [Florian Knoll](florian.knoll@nyuangone.org) [FastMRI](https://fastmri.med.nyu.edu/) The dataset is estimated to grow annually to include MRI raw data and imaging fo MIT License aws-pds, life sciences, health, imaging, biology, image processing, neurobiology, neuroimaging, magnetic resonance imaging https://fastmri.med.nyu.edu/ @@ -826,9 +827,9 @@ Nanopore Reference Human Genome Nanopore Reference Human Genome arn:aws:s3:::nan NapierOne Mixed File Dataset NapierOne Mixed File Dataset arn:aws:s3:::napierone.com eu-north-1 S3 Bucket https://github.com/simonrdavies/NapierOne Simon Davies s.davies@napier.ac.uk Richard Macfarlane R.Macfarlane@napier.ac.u [School of Computing at Edinburgh Napier University](https://www.napier.ac.uk/ab Data will be added as methodology improves or new common or required file types NapierOne is released under the Edinburgh Napier University License Agreement an computer forensics, computer security, cyber security, digital forensics, ransomware, malware, mixed file dataset, aws-pds ['[Browse Bucket](http://napierone.com.s3-website.eu-north-1.amazonaws.com)'] National Archives Catalog National Archives Catalog arn:aws:s3:::nara-national-archives-catalog us-east-2 S3 Bucket https://www.archives.gov/developer/national-archives-catalog-dataset public.dataset.program@nara.gov National Archives and Records Administration (NARA) Biannual US Government work nara, national archives catalog, archives, government records, aws-pds National Cancer Institute Center for Cancer Research - Diffuse Large B Cell Lymphoma (DLBCL) Genomics and Expression RNA-Seq Gene Expression Quantification arn:aws:s3:::gdc-nciccr-phs001444-2-open us-east-1 S3 Bucket https://gdc.cancer.gov/about-data/publications/DLBCL-2018 dcf-support@datacommons.io [Center for Translational Data Science at The University of Chicago](https://ctd Genomic Data Commons (GDC) is source of truth for this dataset; GDC offers month NIH Genomic Data Sharing Policy: https://gdc.cancer.gov/access-data/data-access- aws-pds, cancer, genomic +National Cancer Institute Imaging Data Commons (IDC) Collections De-identified imaging data files in DICOM format distributed under CC-NC license arn:aws:s3:::idc-open-data-cr us-east-1 S3 Bucket https://learn.canceridc.dev/ https://discourse.canceridc.dev/ Imaging Data Commons (IDC)(https://imaging.datacommons.cancer.gov) team Every 1-3 months https://fairsharing.org/FAIRsharing.0b5a1d aws-pds, cancer, imaging, digital pathology, radiology, microscopy, fluorescence imaging, image processing, machine learning National Cancer Institute Imaging Data Commons (IDC) Collections Second bucket containing de-identified imaging data files in DICOM format distri arn:aws:s3:::idc-open-data-two us-east-1 S3 Bucket https://learn.canceridc.dev/ https://discourse.canceridc.dev/ Imaging Data Commons (IDC)(https://imaging.datacommons.cancer.gov) team Every 1-3 months https://fairsharing.org/FAIRsharing.0b5a1d aws-pds, cancer, imaging, digital pathology, radiology, microscopy, fluorescence imaging, image processing, machine learning National Cancer Institute Imaging Data Commons (IDC) Collections De-identified imaging data files in DICOM format distributed under CC-BY license arn:aws:s3:::idc-open-data us-east-1 S3 Bucket https://learn.canceridc.dev/ https://discourse.canceridc.dev/ Imaging Data Commons (IDC)(https://imaging.datacommons.cancer.gov) team Every 1-3 months https://fairsharing.org/FAIRsharing.0b5a1d aws-pds, cancer, imaging, digital pathology, radiology, microscopy, fluorescence imaging, image processing, machine learning -National Cancer Institute Imaging Data Commons (IDC) Collections De-identified imaging data files in DICOM format distributed under CC-NC license arn:aws:s3:::idc-open-data-cr us-east-1 S3 Bucket https://learn.canceridc.dev/ https://discourse.canceridc.dev/ Imaging Data Commons (IDC)(https://imaging.datacommons.cancer.gov) team Every 1-3 months https://fairsharing.org/FAIRsharing.0b5a1d aws-pds, cancer, imaging, digital pathology, radiology, microscopy, fluorescence imaging, image processing, machine learning National Climate Database (NCDB) NCDB CONUS 4km Hourly CONUS (2006-2100) in HDF5 format arn:aws:s3:::nrel-pds-ncdb/4km-Hourly-CONUS/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ Manajit.Sengupta@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As needed Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar, climate projections, CMIP5, CMIP6 ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-ncdb&prefix=v3%2F4km-Hourly-CONUS%2F)'] National Climate Database (NCDB) HSDS NCDB Domains arn:aws:s3:::nrel-pds-hsds/nrel/ncdb/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ Manajit.Sengupta@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As needed Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar, climate projections, CMIP5, CMIP6 ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-hsds&prefix=nrel%2Fncdb%2F)'] National Climate Database (NCDB) National Climate Database (NCDB) arn:aws:s3:::nrel-pds-ncdb/ us-west-2 S3 Bucket https://nsrdb.nrel.gov/ Manajit.Sengupta@nrel.gov [National Renewable Energy Laboratory](https://www.nrel.gov/) As needed Creative Commons Attribution 3.0 United States License aws-pds, earth observation, energy, geospatial, meteorological, solar, climate projections, CMIP5, CMIP6 ['[Browse Dataset](https://data.openei.org/s3_viewer?bucket=nrel-pds-ncdb)'] @@ -861,7 +862,7 @@ ONS Open Data Portal Data of the relationship between power plant and groups of ONS Open Data Portal Daily stored energy per basin (PT-BR Energia Armazenada (EAR) diário por bacia) arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-bacia)'] ONS Open Data Portal Daily stored energy per equivalent energy reservoir (PT-BR Energia Armazenada (E arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-ree-reservatorio-equivalente-de-energia)'] ONS Open Data Portal Daily stored energy per reservoir (PT-BR Energia Armazenada (EAR) diário por res arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-reservatorio)'] -ONS Open Data Portal Daily stored energy per subsystem (PT-BR Energia Armazenada (EAR) diário por sub arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-subsistema)'] +ONS Open Data Portal Daily affluent natural energy per basin (PT-BR Energia Natural Afluente (ENA) di arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ena-diario-por-bacia)'] ONS Open Data Portal Daily affluent natural energy per equivalent energy reservoir (PT-BR Energia Nat arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ena-diario-por-ree-reservatorio-equivalente-de-energia)'] ONS Open Data Portal Daily affluent natural energy per reservoir (PT-BR Energia Natural Afluente (ENA arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ena-diario-por-reservatorio)'] ONS Open Data Portal Reagents control equipment (PT-BR Equipamentos de controle de reativos da rede d arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/equipamento-controle-reativo)'] @@ -890,7 +891,7 @@ ONS Open Data Portal Fluviometric data (PT-BR Grandezas fluviométricas) arn:aws ONS Open Data Portal Generation per power plant on an hourly basis (PT-BR Geração por usina em base h arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/geracao-usina-2)'] ONS Open Data Portal Performance indicator of generation functions per generating unit on an yearly b arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ind_disponibilidade_fgeracao_uge_anual)'] ONS Open Data Portal Semi-hourly marginal cost of operation (PT-BR Custo Marginal de Operação (CMO) S arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/cmo-semi-horario)'] -ONS Open Data Portal Daily affluent natural energy per basin (PT-BR Energia Natural Afluente (ENA) di arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ena-diario-por-bacia)'] +ONS Open Data Portal Daily stored energy per subsystem (PT-BR Energia Armazenada (EAR) diário por sub arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/ear-diario-por-subsistema)'] ONS Open Data Portal Verfied energy charge (PT-BR Carga de energia verificada) arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/carga-energia-verificada)'] ONS Open Data Portal Scheduled energy charge (PT-BR Carga de energia programda) arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/carga-energia-programada)'] ONS Open Data Portal Monthly energy charge (PT-BR Carga de energia mensal) arn:aws:s3:::ons-aws-prod-opendata sa-east-1 S3 Bucket https://dados.ons.org.br/dataset/ dadosabertos@ons.org.br [ONS - National Electric System Operator](https://www.ons.org.br/) diary CC-BY 4.0 aws-pds, electricity, hydrography, energy ['[Browse Dataset](https://dados.ons.org.br/dataset/carga-mensal)'] diff --git a/gee_catalog.json b/gee_catalog.json index 312294b..af4e13c 100644 --- a/gee_catalog.json +++ b/gee_catalog.json @@ -114,7 +114,7 @@ "snippet": "ee.ImageCollection('ASTER/AST_L1T_003')", "provider": "NASA LP DAAC at the USGS EROS Center", "state_date": "2000-03-04", - "end_date": "2024-11-27", + "end_date": "2024-11-28", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aster, eos, imagery, nasa, nir, radiance, swir, terra, thermal, tir, toa, usgs, vnir", @@ -726,7 +726,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S1_GRD')", "provider": "European Union/ESA/Copernicus", "state_date": "2014-10-03", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "backscatter, copernicus, esa, eu, polarization, radar, sar, sentinel", @@ -744,7 +744,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2')", "provider": "European Union/ESA/Copernicus", "state_date": "2015-06-27", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -56, 180, 83", "deprecated": true, "keywords": "copernicus, esa, eu, msi, radiance, sentinel", @@ -762,7 +762,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY')", "provider": "European Union/ESA/Copernicus/SentinelHub", "state_date": "2015-06-27", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "cloud, copernicus, esa, eu, msi, radiance, sentinel, sentinelhub", @@ -780,7 +780,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_HARMONIZED')", "provider": "European Union/ESA/Copernicus", "state_date": "2015-06-27", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "copernicus, esa, eu, msi, radiance, sentinel", @@ -798,7 +798,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_SR')", "provider": "European Union/ESA/Copernicus", "state_date": "2017-03-28", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -56, 180, 83", "deprecated": true, "keywords": "copernicus, esa, eu, msi, reflectance, sentinel, sr", @@ -816,7 +816,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED')", "provider": "European Union/ESA/Copernicus", "state_date": "2017-03-28", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -56, 180, 83", "deprecated": false, "keywords": "copernicus, esa, eu, msi, reflectance, sentinel, sr", @@ -834,7 +834,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S3/OLCI')", "provider": "European Union/ESA/Copernicus", "state_date": "2016-10-18", - "end_date": "2024-12-08", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "copernicus, esa, eu, olci, radiance, sentinel, toa", @@ -852,7 +852,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -870,7 +870,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_LH')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -888,7 +888,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-05", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi", @@ -906,7 +906,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-11-22", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi", @@ -924,7 +924,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-10-02", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi", @@ -942,7 +942,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_NO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi", @@ -960,7 +960,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi", @@ -978,7 +978,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_SO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi", @@ -996,7 +996,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-04", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -1014,7 +1014,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-04", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai", @@ -1032,7 +1032,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4')", "provider": "European Union/ESA/Copernicus", "state_date": "2019-02-08", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, copernicus, esa, eu, knmi, methane, s5p, sentinel, sron, tropomi", @@ -1050,7 +1050,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CLOUD')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-07-04", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi", @@ -1068,7 +1068,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-06-28", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi", @@ -1086,7 +1086,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_HCHO')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-12-05", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi", @@ -1104,7 +1104,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-06-28", - "end_date": "2024-11-30", + "end_date": "2024-12-01", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi", @@ -1122,7 +1122,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-09-08", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi", @@ -1140,7 +1140,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3_TCL')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-04-30", - "end_date": "2024-11-20", + "end_date": "2024-11-24", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi", @@ -1158,7 +1158,7 @@ "snippet": "ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_SO2')", "provider": "European Union/ESA/Copernicus", "state_date": "2018-12-05", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi", @@ -1626,7 +1626,7 @@ "snippet": "ee.ImageCollection('ECMWF/ERA5_LAND/DAILY_AGGR')", "provider": "Daily Aggregates: Google and Copernicus Climate Data Store", "state_date": "1950-01-02", - "end_date": "2024-12-01", + "end_date": "2024-12-03", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind", @@ -1644,7 +1644,7 @@ "snippet": "ee.ImageCollection('ECMWF/ERA5_LAND/HOURLY')", "provider": "Copernicus Climate Data Store", "state_date": "1950-01-01", - "end_date": "2024-12-03", + "end_date": "2024-12-04", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind", @@ -2400,7 +2400,7 @@ "snippet": "ee.ImageCollection('FIRMS')", "provider": "NASA / LANCE / EOSDIS", "state_date": "2000-11-01", - "end_date": "2024-12-08", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal", @@ -2688,7 +2688,7 @@ "snippet": "ee.ImageCollection('GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED')", "provider": "Google Earth Engine", "state_date": "2015-06-27", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "google, cloud, sentinel2_derived", @@ -2706,7 +2706,7 @@ "snippet": "ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1')", "provider": "World Resources Institute", "state_date": "2015-06-27", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "global, google, landcover, landuse, nrt, sentinel2_derived", @@ -3750,7 +3750,7 @@ "snippet": "ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V3')", "provider": "Global Change Observation Mission (GCOM)", "state_date": "2021-11-29", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index", @@ -3804,7 +3804,7 @@ "snippet": "ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V3')", "provider": "Global Change Observation Mission (GCOM)", "state_date": "2021-11-29", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst", @@ -3858,7 +3858,7 @@ "snippet": "ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V3')", "provider": "Global Change Observation Mission (GCOM)", "state_date": "2021-11-29", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color", @@ -3912,7 +3912,7 @@ "snippet": "ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/SST/V3')", "provider": "Global Change Observation Mission (GCOM)", "state_date": "2018-01-22", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, g_portal, gcom, gcom_c, jaxa, ocean, sea_surface_temperature, sst", @@ -3930,7 +3930,7 @@ "snippet": "ee.ImageCollection('JAXA/GPM_L3/GSMaP/v6/operational')", "provider": "JAXA Earth Observation Research Center", "state_date": "2014-03-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -60, 180, 60", "deprecated": false, "keywords": "climate, geophysical, gpm, hourly, jaxa, precipitation, weather", @@ -3966,7 +3966,7 @@ "snippet": "ee.ImageCollection('JAXA/GPM_L3/GSMaP/v7/operational')", "provider": "JAXA Earth Observation Research Center", "state_date": "2014-03-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -60, 180, 60", "deprecated": false, "keywords": "climate, geophysical, gpm, hourly, jaxa, precipitation, weather", @@ -3984,7 +3984,7 @@ "snippet": "ee.ImageCollection('JAXA/GPM_L3/GSMaP/v8/operational')", "provider": "JAXA Earth Observation Research Center", "state_date": "1998-01-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -60, 180, 60", "deprecated": false, "keywords": "climate, geophysical, gpm, hourly, jaxa, precipitation, weather", @@ -5208,7 +5208,7 @@ "snippet": "ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_BAI')", "provider": "Google", "state_date": "1984-01-01", - "end_date": "2024-12-02", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "bai, landsat, usgs", @@ -5226,7 +5226,7 @@ "snippet": "ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_EVI')", "provider": "Google", "state_date": "1984-01-01", - "end_date": "2024-12-02", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "evi, landsat, usgs", @@ -5244,7 +5244,7 @@ "snippet": "ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NBR')", "provider": "Google", "state_date": "1984-01-01", - "end_date": "2024-12-02", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "landsat, nbrt, usgs", @@ -5262,7 +5262,7 @@ "snippet": "ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDVI')", "provider": "Google", "state_date": "1984-01-01", - "end_date": "2024-12-02", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "landsat, ndvi, usgs", @@ -5280,7 +5280,7 @@ "snippet": "ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDWI')", "provider": "Google", "state_date": "1984-01-01", - "end_date": "2024-12-02", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "landsat, ndwi, usgs", @@ -5514,7 +5514,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC08/C02/T1_RT')", "provider": "USGS", "state_date": "2013-03-18", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l8, landsat, lc8, nrt, oli_tirs, radiance, rt, t1, tier1, usgs", @@ -5532,7 +5532,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA')", "provider": "USGS/Google", "state_date": "2013-03-18", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l8, landsat, lc8, toa, usgs", @@ -5604,7 +5604,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC08/C02/T2_TOA')", "provider": "USGS/Google", "state_date": "2021-10-28", - "end_date": "2024-12-01", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, landsat, toa, usgs", @@ -5622,7 +5622,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T1')", "provider": "USGS", "state_date": "2021-10-31", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l9, landsat, lc9, oli_tirs, radiance, t1, tier1, usgs", @@ -5640,7 +5640,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T1_L2')", "provider": "USGS", "state_date": "2021-10-31", - "end_date": "2024-12-05", + "end_date": "2024-12-06", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "cfmask, cloud, fmask, global, l9sr, landsat, lasrc, lc09, lst, reflectance, sr, usgs", @@ -5676,7 +5676,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T2')", "provider": "USGS", "state_date": "2021-11-02", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l9, landsat, lc9, oli_tirs, radiance, t2, tier2, usgs", @@ -5712,7 +5712,7 @@ "snippet": "ee.ImageCollection('LANDSAT/LC09/C02/T2_TOA')", "provider": "USGS/Google", "state_date": "2021-11-02", - "end_date": "2024-12-08", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "c2, global, l9, landsat, lc9, toa, usgs", @@ -7926,7 +7926,7 @@ "snippet": "ee.ImageCollection('MODIS/061/MOD10A1')", "provider": "NASA NSIDC DAAC at CIRES", "state_date": "2000-02-24", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "albedo, daily, geophysical, global, mod10a1, modis, nasa, nsidc, snow, terra", @@ -8412,7 +8412,7 @@ "snippet": "ee.ImageCollection('MODIS/061/MYD10A1')", "provider": "NASA NSIDC DAAC at CIRES", "state_date": "2002-07-04", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "albedo, aqua, daily, geophysical, global, modis, myd10a1, nasa, nsidc, snow", @@ -9816,7 +9816,7 @@ "snippet": "ee.ImageCollection('NASA/GEOS-CF/v1/fcst/htf')", "provider": "NASA / GMAO", "state_date": "2022-10-01", - "end_date": "2024-12-04", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "composition, forecast, geos, gmao, nasa", @@ -9834,7 +9834,7 @@ "snippet": "ee.ImageCollection('NASA/GEOS-CF/v1/fcst/tavg1hr')", "provider": "NASA / GMAO", "state_date": "2022-10-01", - "end_date": "2024-12-04", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "composition, forecast, geos, gmao, nasa", @@ -9852,7 +9852,7 @@ "snippet": "ee.ImageCollection('NASA/GEOS-CF/v1/rpl/htf')", "provider": "NASA / GMAO", "state_date": "2018-01-01", - "end_date": "2024-12-04", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "composition, forecast, geos, gmao, nasa", @@ -9870,7 +9870,7 @@ "snippet": "ee.ImageCollection('NASA/GEOS-CF/v1/rpl/tavg1hr')", "provider": "NASA / GMAO", "state_date": "2018-01-01", - "end_date": "2024-12-04", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "composition, forecast, geos, gmao, nasa", @@ -10014,7 +10014,7 @@ "snippet": "ee.ImageCollection('NASA/GPM_L3/IMERG_V07')", "provider": "NASA GES DISC at NASA Goddard Space Flight Center", "state_date": "2000-06-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather", @@ -10338,7 +10338,7 @@ "snippet": "ee.ImageCollection('NASA/LANCE/NOAA20_VIIRS/C2')", "provider": "NASA / LANCE / NOAA20_VIIRS", "state_date": "2023-10-08", - "end_date": "2024-12-07", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal, viirs", @@ -10356,7 +10356,7 @@ "snippet": "ee.ImageCollection('NASA/LANCE/SNPP_VIIRS/C2')", "provider": "NASA / LANCE / SNPP_VIIRS", "state_date": "2023-09-03", - "end_date": "2024-12-07", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal, viirs", @@ -10464,7 +10464,7 @@ "snippet": "ee.ImageCollection('NASA/NLDAS/FORA0125_H002')", "provider": "NASA GES DISC at NASA Goddard Space Flight Center", "state_date": "1979-01-01", - "end_date": "2024-12-06", + "end_date": "2024-12-07", "bbox": "-125.15, 24.85, -66.85, 53.28", "deprecated": false, "keywords": "climate, evaporation, forcing, geophysical, hourly, humidity, ldas, nasa, nldas, precipitation, pressure, radiation, temperature, wind", @@ -10626,7 +10626,7 @@ "snippet": "ee.ImageCollection('NASA/SMAP/SPL3SMP_E/006')", "provider": "Google and NSIDC", "state_date": "2023-12-04", - "end_date": "2024-12-06", + "end_date": "2024-12-08", "bbox": "-180, -84, 180, 84", "deprecated": false, "keywords": "drought, nasa, smap, soil_moisture, surface, weather", @@ -10842,7 +10842,7 @@ "snippet": "ee.ImageCollection('NCEP_RE/sea_level_pressure')", "provider": "NCEP", "state_date": "1948-01-01", - "end_date": "2024-12-06", + "end_date": "2024-12-07", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "atmosphere, climate, geophysical, ncep, noaa, pressure, reanalysis", @@ -10860,7 +10860,7 @@ "snippet": "ee.ImageCollection('NCEP_RE/surface_temp')", "provider": "NCEP", "state_date": "1948-01-01", - "end_date": "2024-12-06", + "end_date": "2024-12-07", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "atmosphere, climate, geophysical, ncep, noaa, reanalysis, temperature", @@ -10878,7 +10878,7 @@ "snippet": "ee.ImageCollection('NCEP_RE/surface_wv')", "provider": "NCEP", "state_date": "1948-01-01", - "end_date": "2024-12-06", + "end_date": "2024-12-07", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "atmosphere, climate, geophysical, ncep, noaa, precipitable, reanalysis, vapor", @@ -11112,7 +11112,7 @@ "snippet": "ee.ImageCollection('NOAA/CDR/OISST/V2_1')", "provider": "NOAA", "state_date": "1981-09-01", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "avhrr, cdr, daily, ice, noaa, ocean, oisst, real_time, sst, temperature", @@ -11184,7 +11184,7 @@ "snippet": "ee.ImageCollection('NOAA/CFSR')", "provider": "NOAA NWS National Centers for Environmental Prediction (NCEP)", "state_date": "2018-12-13", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather", @@ -11202,7 +11202,7 @@ "snippet": "ee.ImageCollection('NOAA/CFSV2/FOR6H')", "provider": "NOAA NWS National Centers for Environmental Prediction (NCEP)", "state_date": "1979-01-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather", @@ -11220,7 +11220,7 @@ "snippet": "ee.ImageCollection('NOAA/CPC/Precipitation')", "provider": "NOAA Physical Sciences Laboratory", "state_date": "2006-01-01", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "daily, noaa, precipitation, weather", @@ -11238,7 +11238,7 @@ "snippet": "ee.ImageCollection('NOAA/CPC/Temperature')", "provider": "NOAA Physical Sciences Laboratory", "state_date": "1979-01-01", - "end_date": "2024-12-08", + "end_date": "2024-12-09", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "daily, noaa, precipitation, weather", @@ -11292,7 +11292,7 @@ "snippet": "ee.ImageCollection('NOAA/GFS0P25')", "provider": "NOAA/NCEP/EMC", "state_date": "2015-07-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "climate, cloud, emc, flux, forecast, geophysical, gfs, humidity, ncep, noaa, precipitation, radiation, temperature, vapor, weather, wind", @@ -11310,7 +11310,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/FDCC')", "provider": "NOAA", "state_date": "2017-05-24", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-152.11, 14, -49.18, 56.77", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire", @@ -11328,7 +11328,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/FDCF')", "provider": "NOAA", "state_date": "2017-05-24", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire", @@ -11346,7 +11346,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/MCMIPC')", "provider": "NOAA", "state_date": "2017-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-152.11, 14, -49.18, 56.77", "deprecated": false, "keywords": "abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather", @@ -11364,7 +11364,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/MCMIPF')", "provider": "NOAA", "state_date": "2017-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather", @@ -11382,7 +11382,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/16/MCMIPM')", "provider": "NOAA", "state_date": "2017-07-10", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather", @@ -11490,7 +11490,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/FDCC')", "provider": "NOAA", "state_date": "2022-10-13", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, 14.57, 180, 53.51", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire", @@ -11508,7 +11508,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/FDCF')", "provider": "NOAA", "state_date": "2022-10-13", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire", @@ -11526,7 +11526,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/MCMIPC')", "provider": "NOAA", "state_date": "2018-12-04", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, 14.57, 180, 53.51", "deprecated": false, "keywords": "abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather", @@ -11544,7 +11544,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/MCMIPF')", "provider": "NOAA", "state_date": "2018-12-04", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather", @@ -11562,7 +11562,7 @@ "snippet": "ee.ImageCollection('NOAA/GOES/18/MCMIPM')", "provider": "NOAA", "state_date": "2018-12-04", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather", @@ -11670,7 +11670,7 @@ "snippet": "ee.ImageCollection('NOAA/NWS/RTMA')", "provider": "NOAA/NWS", "state_date": "2011-01-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-130.17, 20.15, -60.81, 52.91", "deprecated": false, "keywords": "climate, cloud, geophysical, humidity, noaa, nws, precipitation, pressure, rtma, surface, temperature, visibility, weather, wind", @@ -11886,7 +11886,7 @@ "snippet": "ee.ImageCollection('NOAA/VIIRS/001/VNP46A1')", "provider": "NASA LAADS DAAC", "state_date": "2012-01-19", - "end_date": "2024-12-05", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "daily, dnb, nasa, noaa, viirs", @@ -12048,7 +12048,7 @@ "snippet": "ee.ImageCollection('OREGONSTATE/PRISM/AN81d')", "provider": "PRISM / OREGONSTATE", "state_date": "1981-01-01", - "end_date": "2024-12-06", + "end_date": "2024-12-07", "bbox": "-125, 24, -66, 50", "deprecated": false, "keywords": "climate, daily, geophysical, oregonstate, precipitation, pressure, prism, temperature, vapor, weather", @@ -13182,7 +13182,7 @@ "snippet": "ee.ImageCollection('TOMS/MERGED')", "provider": "NASA / GES DISC", "state_date": "1978-11-01", - "end_date": "2024-12-07", + "end_date": "2024-12-08", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "atmosphere, aura, climate, geophysical, ges_disc, goddard, nasa, omi, ozone, toms", @@ -14784,7 +14784,7 @@ "snippet": "ee.ImageCollection('UTOKYO/WTLAB/KBDI/v1')", "provider": "Institute of Industrial Science, The University of Tokyo, Japan", "state_date": "2007-01-01", - "end_date": "2024-12-07", + "end_date": "2024-12-09", "bbox": "60, -60, 180, 60", "deprecated": false, "keywords": "drought, kbdi, lst_derived, rainfall, utokyo, wtlab", @@ -16116,7 +16116,7 @@ "snippet": "ee.ImageCollection('projects/gcp-public-data-weathernext/assets/59572747_4_0')", "provider": "Google", "state_date": "2020-01-01", - "end_date": "2024-12-09", + "end_date": "2024-12-10", "bbox": "-180, -90, 180, 90", "deprecated": false, "keywords": "weather, weathernext, forecast, temperature, precipitation, wind", @@ -16273,7 +16273,7 @@ }, { "id": "projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c", - "title": "GPW Annual Dominant Class of Crasslands v1", + "title": "GPW Annual Dominant Class of Grasslands v1", "type": "image_collection", "snippet": "ee.ImageCollection('projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c')", "provider": "Land and Carbon Lab Global Pasture Watch", diff --git a/gee_catalog.tsv b/gee_catalog.tsv index 26865d8..421aff9 100644 --- a/gee_catalog.tsv +++ b/gee_catalog.tsv @@ -5,7 +5,7 @@ ACA/reef_habitat/v2_0 Allen Coral Atlas (ACA) - Geomorphic Zonation and Benthic AHN/AHN2_05M_INT AHN Netherlands 0.5m DEM, Interpolated image ee.Image('AHN/AHN2_05M_INT') AHN 2012-01-01 2012-01-01 3.35, 50.74, 7.24, 53.55 False ahn, dem, elevation, geophysical, lidar, netherlands https://storage.googleapis.com/earthengine-stac/catalog/AHN/AHN_AHN2_05M_INT.json https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_INT CC0-1.0 AHN/AHN2_05M_NON AHN Netherlands 0.5m DEM, Non-Interpolated image ee.Image('AHN/AHN2_05M_NON') AHN 2012-01-01 2012-01-01 3.35, 50.74, 7.24, 53.55 False ahn, dem, elevation, geophysical, lidar, netherlands https://storage.googleapis.com/earthengine-stac/catalog/AHN/AHN_AHN2_05M_NON.json https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_NON CC0-1.0 AHN/AHN2_05M_RUW AHN Netherlands 0.5m DEM, Raw Samples image ee.Image('AHN/AHN2_05M_RUW') AHN 2012-01-01 2012-01-01 3.35, 50.74, 7.24, 53.55 False ahn, dem, elevation, geophysical, lidar, netherlands https://storage.googleapis.com/earthengine-stac/catalog/AHN/AHN_AHN2_05M_RUW.json https://developers.google.com/earth-engine/datasets/catalog/AHN_AHN2_05M_RUW CC0-1.0 -ASTER/AST_L1T_003 ASTER L1T Radiance image_collection ee.ImageCollection('ASTER/AST_L1T_003') NASA LP DAAC at the USGS EROS Center 2000-03-04 2024-11-27 -180, -90, 180, 90 False aster, eos, imagery, nasa, nir, radiance, swir, terra, thermal, tir, toa, usgs, vnir https://storage.googleapis.com/earthengine-stac/catalog/ASTER/ASTER_AST_L1T_003.json https://developers.google.com/earth-engine/datasets/catalog/ASTER_AST_L1T_003 proprietary +ASTER/AST_L1T_003 ASTER L1T Radiance image_collection ee.ImageCollection('ASTER/AST_L1T_003') NASA LP DAAC at the USGS EROS Center 2000-03-04 2024-11-28 -180, -90, 180, 90 False aster, eos, imagery, nasa, nir, radiance, swir, terra, thermal, tir, toa, usgs, vnir https://storage.googleapis.com/earthengine-stac/catalog/ASTER/ASTER_AST_L1T_003.json https://developers.google.com/earth-engine/datasets/catalog/ASTER_AST_L1T_003 proprietary AU/GA/AUSTRALIA_5M_DEM Australian 5M DEM image_collection ee.ImageCollection('AU/GA/AUSTRALIA_5M_DEM') Geoscience Australia 2015-12-01 2015-12-01 114.09, -43.45, 153.64, -9.88 False australia, dem, elevation, ga, geophysical, geoscience_australia, lidar https://storage.googleapis.com/earthengine-stac/catalog/AU/AU_GA_AUSTRALIA_5M_DEM.json https://developers.google.com/earth-engine/datasets/catalog/AU_GA_AUSTRALIA_5M_DEM CC-BY-4.0 AU/GA/DEM_1SEC/v10/DEM-H DEM-H: Australian SRTM Hydrologically Enforced Digital Elevation Model image ee.Image('AU/GA/DEM_1SEC/v10/DEM-H') Geoscience Australia 2010-02-01 2010-02-01 112.99, -44.06, 154, -9.99 False australia, dem, elevation, ga, geophysical, geoscience_australia, smoothed, srtm https://storage.googleapis.com/earthengine-stac/catalog/AU/AU_GA_DEM_1SEC_v10_DEM-H.json https://developers.google.com/earth-engine/datasets/catalog/AU_GA_DEM_1SEC_v10_DEM-H CC-BY-4.0 AU/GA/DEM_1SEC/v10/DEM-S DEM-S: Australian Smoothed Digital Elevation Model image ee.Image('AU/GA/DEM_1SEC/v10/DEM-S') Geoscience Australia 2010-02-01 2010-02-01 112.99, -44.06, 154, -9.99 False australia, dem, elevation, ga, geophysical, geoscience_australia, smoothed, srtm https://storage.googleapis.com/earthengine-stac/catalog/AU/AU_GA_DEM_1SEC_v10_DEM-S.json https://developers.google.com/earth-engine/datasets/catalog/AU_GA_DEM_1SEC_v10_DEM-S CC-BY-4.0 @@ -39,31 +39,31 @@ COPERNICUS/CORINE/V20/100m Copernicus CORINE Land Cover image_collection ee.Imag COPERNICUS/DEM/GLO30 Copernicus DEM GLO-30: Global 30m Digital Elevation Model image_collection ee.ImageCollection('COPERNICUS/DEM/GLO30') Copernicus 2010-12-01 2015-01-31 -180, -90, 180, 90 False copernicus, dem, elevation, geophysical https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_DEM_GLO30.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_DEM_GLO30 proprietary COPERNICUS/Landcover/100m/Proba-V-C3/Global Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3 image_collection ee.ImageCollection('COPERNICUS/Landcover/100m/Proba-V-C3/Global') Copernicus 2015-01-01 2019-12-31 -180, -90, 180, 90 False copernicus, eea, esa, eu, landcover, proba, probav, vito https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_Landcover_100m_Proba-V-C3_Global.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global proprietary COPERNICUS/Landcover/100m/Proba-V/Global Copernicus Global Land Cover Layers: CGLS-LC100 Collection 2 [deprecated] image_collection ee.ImageCollection('COPERNICUS/Landcover/100m/Proba-V/Global') Copernicus 2015-01-01 2015-01-01 -180, -90, 180, 90 True copernicus, eea, esa, eu, landcover, proba, probav, vito https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_Landcover_100m_Proba-V_Global.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V_Global proprietary -COPERNICUS/S1_GRD Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling image_collection ee.ImageCollection('COPERNICUS/S1_GRD') European Union/ESA/Copernicus 2014-10-03 2024-12-09 -180, -90, 180, 90 False backscatter, copernicus, esa, eu, polarization, radar, sar, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S1_GRD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD proprietary -COPERNICUS/S2 Sentinel-2 MSI: MultiSpectral Instrument, Level-1C [deprecated] image_collection ee.ImageCollection('COPERNICUS/S2') European Union/ESA/Copernicus 2015-06-27 2024-12-09 -180, -56, 180, 83 True copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2 proprietary -COPERNICUS/S2_CLOUD_PROBABILITY Sentinel-2: Cloud Probability image_collection ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') European Union/ESA/Copernicus/SentinelHub 2015-06-27 2024-12-09 -180, -56, 180, 83 False cloud, copernicus, esa, eu, msi, radiance, sentinel, sentinelhub https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_CLOUD_PROBABILITY.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY proprietary -COPERNICUS/S2_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image_collection ee.ImageCollection('COPERNICUS/S2_HARMONIZED') European Union/ESA/Copernicus 2015-06-27 2024-12-09 -180, -56, 180, 83 False copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED proprietary -COPERNICUS/S2_SR Sentinel-2 MSI: MultiSpectral Instrument, Level-2A [deprecated] image_collection ee.ImageCollection('COPERNICUS/S2_SR') European Union/ESA/Copernicus 2017-03-28 2024-12-09 -180, -56, 180, 83 True copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR proprietary -COPERNICUS/S2_SR_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image_collection ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') European Union/ESA/Copernicus 2017-03-28 2024-12-09 -180, -56, 180, 83 False copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED proprietary -COPERNICUS/S3/OLCI Sentinel-3 OLCI EFR: Ocean and Land Color Instrument Earth Observation Full Resolution image_collection ee.ImageCollection('COPERNICUS/S3/OLCI') European Union/ESA/Copernicus 2016-10-18 2024-12-08 -180, -90, 180, 90 False copernicus, esa, eu, olci, radiance, sentinel, toa https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S3_OLCI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S3_OLCI proprietary -COPERNICUS/S5P/NRTI/L3_AER_AI Sentinel-5P NRTI AER AI: Near Real-Time UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI') European Union/ESA/Copernicus 2018-07-10 2024-12-09 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_AI proprietary -COPERNICUS/S5P/NRTI/L3_AER_LH Sentinel-5P NRTI AER LH: Near Real-Time UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_LH') European Union/ESA/Copernicus 2018-07-10 2024-12-09 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_LH proprietary -COPERNICUS/S5P/NRTI/L3_CLOUD Sentinel-5P NRTI CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD') European Union/ESA/Copernicus 2018-07-05 2024-12-09 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CLOUD proprietary -COPERNICUS/S5P/NRTI/L3_CO Sentinel-5P NRTI CO: Near Real-Time Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CO') European Union/ESA/Copernicus 2018-11-22 2024-12-09 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CO proprietary -COPERNICUS/S5P/NRTI/L3_HCHO Sentinel-5P NRTI HCHO: Near Real-Time Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO') European Union/ESA/Copernicus 2018-10-02 2024-12-09 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_HCHO proprietary -COPERNICUS/S5P/NRTI/L3_NO2 Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_NO2') European Union/ESA/Copernicus 2018-07-10 2024-12-09 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_NO2 proprietary -COPERNICUS/S5P/NRTI/L3_O3 Sentinel-5P NRTI O3: Near Real-Time Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3') European Union/ESA/Copernicus 2018-07-10 2024-12-09 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_O3 proprietary -COPERNICUS/S5P/NRTI/L3_SO2 Sentinel-5P NRTI SO2: Near Real-Time Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_SO2') European Union/ESA/Copernicus 2018-07-10 2024-12-09 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_SO2 proprietary -COPERNICUS/S5P/OFFL/L3_AER_AI Sentinel-5P OFFL AER AI: Offline UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI') European Union/ESA/Copernicus 2018-07-04 2024-12-07 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_AI proprietary -COPERNICUS/S5P/OFFL/L3_AER_LH Sentinel-5P OFFL AER LH: Offline UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH') European Union/ESA/Copernicus 2018-07-04 2024-12-07 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_LH proprietary -COPERNICUS/S5P/OFFL/L3_CH4 Sentinel-5P OFFL CH4: Offline Methane image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4') European Union/ESA/Copernicus 2019-02-08 2024-12-07 -180, -90, 180, 90 False climate, copernicus, esa, eu, knmi, methane, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CH4.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4 proprietary -COPERNICUS/S5P/OFFL/L3_CLOUD Sentinel-5P OFFL CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CLOUD') European Union/ESA/Copernicus 2018-07-04 2024-12-07 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CLOUD proprietary -COPERNICUS/S5P/OFFL/L3_CO Sentinel-5P OFFL CO: Offline Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO') European Union/ESA/Copernicus 2018-06-28 2024-12-07 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO proprietary -COPERNICUS/S5P/OFFL/L3_HCHO Sentinel-5P OFFL HCHO: Offline Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_HCHO') European Union/ESA/Copernicus 2018-12-05 2024-12-07 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_HCHO proprietary -COPERNICUS/S5P/OFFL/L3_NO2 Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2') European Union/ESA/Copernicus 2018-06-28 2024-11-30 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 proprietary -COPERNICUS/S5P/OFFL/L3_O3 Sentinel-5P OFFL O3: Offline Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3') European Union/ESA/Copernicus 2018-09-08 2024-12-07 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3 proprietary -COPERNICUS/S5P/OFFL/L3_O3_TCL Sentinel-5P OFFL O3 TCL: Offline Tropospheric Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3_TCL') European Union/ESA/Copernicus 2018-04-30 2024-11-20 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3_TCL.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3_TCL proprietary -COPERNICUS/S5P/OFFL/L3_SO2 Sentinel-5P OFFL SO2: Offline Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_SO2') European Union/ESA/Copernicus 2018-12-05 2024-12-07 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2 proprietary +COPERNICUS/S1_GRD Sentinel-1 SAR GRD: C-band Synthetic Aperture Radar Ground Range Detected, log scaling image_collection ee.ImageCollection('COPERNICUS/S1_GRD') European Union/ESA/Copernicus 2014-10-03 2024-12-10 -180, -90, 180, 90 False backscatter, copernicus, esa, eu, polarization, radar, sar, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S1_GRD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD proprietary +COPERNICUS/S2 Sentinel-2 MSI: MultiSpectral Instrument, Level-1C [deprecated] image_collection ee.ImageCollection('COPERNICUS/S2') European Union/ESA/Copernicus 2015-06-27 2024-12-10 -180, -56, 180, 83 True copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2 proprietary +COPERNICUS/S2_CLOUD_PROBABILITY Sentinel-2: Cloud Probability image_collection ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY') European Union/ESA/Copernicus/SentinelHub 2015-06-27 2024-12-10 -180, -56, 180, 83 False cloud, copernicus, esa, eu, msi, radiance, sentinel, sentinelhub https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_CLOUD_PROBABILITY.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY proprietary +COPERNICUS/S2_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C image_collection ee.ImageCollection('COPERNICUS/S2_HARMONIZED') European Union/ESA/Copernicus 2015-06-27 2024-12-10 -180, -56, 180, 83 False copernicus, esa, eu, msi, radiance, sentinel https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED proprietary +COPERNICUS/S2_SR Sentinel-2 MSI: MultiSpectral Instrument, Level-2A [deprecated] image_collection ee.ImageCollection('COPERNICUS/S2_SR') European Union/ESA/Copernicus 2017-03-28 2024-12-10 -180, -56, 180, 83 True copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR proprietary +COPERNICUS/S2_SR_HARMONIZED Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A image_collection ee.ImageCollection('COPERNICUS/S2_SR_HARMONIZED') European Union/ESA/Copernicus 2017-03-28 2024-12-10 -180, -56, 180, 83 False copernicus, esa, eu, msi, reflectance, sentinel, sr https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S2_SR_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED proprietary +COPERNICUS/S3/OLCI Sentinel-3 OLCI EFR: Ocean and Land Color Instrument Earth Observation Full Resolution image_collection ee.ImageCollection('COPERNICUS/S3/OLCI') European Union/ESA/Copernicus 2016-10-18 2024-12-09 -180, -90, 180, 90 False copernicus, esa, eu, olci, radiance, sentinel, toa https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S3_OLCI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S3_OLCI proprietary +COPERNICUS/S5P/NRTI/L3_AER_AI Sentinel-5P NRTI AER AI: Near Real-Time UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_AI') European Union/ESA/Copernicus 2018-07-10 2024-12-10 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_AI proprietary +COPERNICUS/S5P/NRTI/L3_AER_LH Sentinel-5P NRTI AER LH: Near Real-Time UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_AER_LH') European Union/ESA/Copernicus 2018-07-10 2024-12-10 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_AER_LH proprietary +COPERNICUS/S5P/NRTI/L3_CLOUD Sentinel-5P NRTI CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CLOUD') European Union/ESA/Copernicus 2018-07-05 2024-12-10 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CLOUD proprietary +COPERNICUS/S5P/NRTI/L3_CO Sentinel-5P NRTI CO: Near Real-Time Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_CO') European Union/ESA/Copernicus 2018-11-22 2024-12-10 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_CO proprietary +COPERNICUS/S5P/NRTI/L3_HCHO Sentinel-5P NRTI HCHO: Near Real-Time Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO') European Union/ESA/Copernicus 2018-10-02 2024-12-10 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_HCHO proprietary +COPERNICUS/S5P/NRTI/L3_NO2 Sentinel-5P NRTI NO2: Near Real-Time Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_NO2') European Union/ESA/Copernicus 2018-07-10 2024-12-10 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_NO2 proprietary +COPERNICUS/S5P/NRTI/L3_O3 Sentinel-5P NRTI O3: Near Real-Time Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_O3') European Union/ESA/Copernicus 2018-07-10 2024-12-10 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_O3 proprietary +COPERNICUS/S5P/NRTI/L3_SO2 Sentinel-5P NRTI SO2: Near Real-Time Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_SO2') European Union/ESA/Copernicus 2018-07-10 2024-12-10 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_NRTI_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_NRTI_L3_SO2 proprietary +COPERNICUS/S5P/OFFL/L3_AER_AI Sentinel-5P OFFL AER AI: Offline UV Aerosol Index image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_AI') European Union/ESA/Copernicus 2018-07-04 2024-12-08 -180, -90, 180, 90 False aai, aerosol, air_quality, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_AI.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_AI proprietary +COPERNICUS/S5P/OFFL/L3_AER_LH Sentinel-5P OFFL AER LH: Offline UV Aerosol Layer Height image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_AER_LH') European Union/ESA/Copernicus 2018-07-04 2024-12-08 -180, -90, 180, 90 False aerosol, air_quality, alh, copernicus, esa, eu, knmi, pollution, s5p, sentinel, tropomi, uvai https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_AER_LH.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_AER_LH proprietary +COPERNICUS/S5P/OFFL/L3_CH4 Sentinel-5P OFFL CH4: Offline Methane image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4') European Union/ESA/Copernicus 2019-02-08 2024-12-08 -180, -90, 180, 90 False climate, copernicus, esa, eu, knmi, methane, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CH4.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4 proprietary +COPERNICUS/S5P/OFFL/L3_CLOUD Sentinel-5P OFFL CLOUD: Near Real-Time Cloud image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CLOUD') European Union/ESA/Copernicus 2018-07-04 2024-12-08 -180, -90, 180, 90 False climate, cloud, copernicus, dlr, esa, eu, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CLOUD.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CLOUD proprietary +COPERNICUS/S5P/OFFL/L3_CO Sentinel-5P OFFL CO: Offline Carbon Monoxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CO') European Union/ESA/Copernicus 2018-06-28 2024-12-08 -180, -90, 180, 90 False air_quality, carbon_monoxide, copernicus, esa, eu, knmi, pollution, s5p, sentinel, sron, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_CO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CO proprietary +COPERNICUS/S5P/OFFL/L3_HCHO Sentinel-5P OFFL HCHO: Offline Formaldehyde image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_HCHO') European Union/ESA/Copernicus 2018-12-05 2024-12-08 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, formaldehyde, hcho, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_HCHO.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_HCHO proprietary +COPERNICUS/S5P/OFFL/L3_NO2 Sentinel-5P OFFL NO2: Offline Nitrogen Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_NO2') European Union/ESA/Copernicus 2018-06-28 2024-12-01 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, knmi, nitrogen_dioxide, no2, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_NO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 proprietary +COPERNICUS/S5P/OFFL/L3_O3 Sentinel-5P OFFL O3: Offline Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3') European Union/ESA/Copernicus 2018-09-08 2024-12-08 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3 proprietary +COPERNICUS/S5P/OFFL/L3_O3_TCL Sentinel-5P OFFL O3 TCL: Offline Tropospheric Ozone image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_O3_TCL') European Union/ESA/Copernicus 2018-04-30 2024-11-24 -180, -90, 180, 90 False air_quality, copernicus, esa, eu, o3, ozone, pollution, s5p, sentinel, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_O3_TCL.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_O3_TCL proprietary +COPERNICUS/S5P/OFFL/L3_SO2 Sentinel-5P OFFL SO2: Offline Sulfur Dioxide image_collection ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_SO2') European Union/ESA/Copernicus 2018-12-05 2024-12-08 -180, -90, 180, 90 False air_quality, bira, copernicus, dlr, esa, eu, pollution, s5p, sentinel, so2, sulfur_dioxide, tropomi https://storage.googleapis.com/earthengine-stac/catalog/COPERNICUS/COPERNICUS_S5P_OFFL_L3_SO2.json https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_SO2 proprietary CPOM/CryoSat2/ANTARCTICA_DEM CryoSat-2 Antarctica 1km DEM image ee.Image('CPOM/CryoSat2/ANTARCTICA_DEM') CPOM 2010-07-01 2016-07-01 -180, -88, 180, -60 False antarctica, cpom, cryosat_2, dem, elevation, polar https://storage.googleapis.com/earthengine-stac/catalog/CPOM/CPOM_CryoSat2_ANTARCTICA_DEM.json https://developers.google.com/earth-engine/datasets/catalog/CPOM_CryoSat2_ANTARCTICA_DEM proprietary CSIC/SPEI/2_8 SPEIbase: Standardised Precipitation-Evapotranspiration Index database, Version 2.8 [deprecated] image_collection ee.ImageCollection('CSIC/SPEI/2_8') Spanish National Research Council (CSIC) 1901-01-01 2021-01-01 -180, -90, 180, 90 True climate, climate_change, drought, evapotranspiration, global, monthly, palmer, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/CSIC/CSIC_SPEI_2_8.json https://developers.google.com/earth-engine/datasets/catalog/CSIC_SPEI_2_8 CC-BY-4.0 CSIC/SPEI/2_9 SPEIbase: Standardised Precipitation-Evapotranspiration Index database, Version 2.9 image_collection ee.ImageCollection('CSIC/SPEI/2_9') Spanish National Research Council (CSIC) 1901-01-01 2023-01-01 -180, -90, 180, 90 False climate, climate_change, drought, evapotranspiration, global, monthly, palmer, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/CSIC/CSIC_SPEI_2_9.json https://developers.google.com/earth-engine/datasets/catalog/CSIC_SPEI_2_9 CC-BY-4.0 @@ -89,8 +89,8 @@ DOE/ORNL/LandScan_HD/Ukraine_202201 LandScan High Definition Data for Ukraine, J ECMWF/CAMS/NRT Copernicus Atmosphere Monitoring Service (CAMS) Global Near-Real-Time image_collection ee.ImageCollection('ECMWF/CAMS/NRT') European Centre for Medium-Range Weather Forecasts (ECMWF) 2016-06-22 2024-12-03 -180, -90, 180, 90 False aerosol, atmosphere, climate, copernicus, ecmwf, forecast, particulate_matter https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_CAMS_NRT.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_CAMS_NRT proprietary ECMWF/ERA5/DAILY ERA5 Daily Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service image_collection ee.ImageCollection('ECMWF/ERA5/DAILY') ECMWF / Copernicus Climate Change Service 1979-01-02 2020-07-09 -180, -90, 180, 90 False climate, copernicus, dewpoint, ecmwf, era5, precipitation, pressure, reanalysis, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_DAILY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY proprietary ECMWF/ERA5/MONTHLY ERA5 Monthly Aggregates - Latest Climate Reanalysis Produced by ECMWF / Copernicus Climate Change Service image_collection ee.ImageCollection('ECMWF/ERA5/MONTHLY') ECMWF / Copernicus Climate Change Service 1979-01-01 2020-06-01 -180, -90, 180, 90 False climate, copernicus, dewpoint, ecmwf, era5, precipitation, pressure, reanalysis, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_MONTHLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_MONTHLY proprietary -ECMWF/ERA5_LAND/DAILY_AGGR ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/DAILY_AGGR') Daily Aggregates: Google and Copernicus Climate Data Store 1950-01-02 2024-12-01 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_DAILY_AGGR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR proprietary -ECMWF/ERA5_LAND/HOURLY ERA5-Land Hourly - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/HOURLY') Copernicus Climate Data Store 1950-01-01 2024-12-03 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_HOURLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY proprietary +ECMWF/ERA5_LAND/DAILY_AGGR ERA5-Land Daily Aggregated - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/DAILY_AGGR') Daily Aggregates: Google and Copernicus Climate Data Store 1950-01-02 2024-12-03 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_DAILY_AGGR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_DAILY_AGGR proprietary +ECMWF/ERA5_LAND/HOURLY ERA5-Land Hourly - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/HOURLY') Copernicus Climate Data Store 1950-01-01 2024-12-04 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_HOURLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY proprietary ECMWF/ERA5_LAND/MONTHLY ERA5-Land Monthly Averaged - ECMWF Climate Reanalysis [deprecated] image_collection ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY') Copernicus Climate Data Store 1950-02-01 2023-04-01 -180, -90, 180, 90 True cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_MONTHLY.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY proprietary ECMWF/ERA5_LAND/MONTHLY_AGGR ERA5-Land Monthly Aggregated - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY_AGGR') Monthly Aggregates: Google and Copernicus Climate Data Store 1950-02-01 2024-11-01 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_MONTHLY_AGGR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR proprietary ECMWF/ERA5_LAND/MONTHLY_BY_HOUR ERA5-Land Monthly Averaged by Hour of Day - ECMWF Climate Reanalysis image_collection ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY_BY_HOUR') Climate Data Store 1950-01-01 2024-10-01 -180, -90, 180, 90 False cds, climate, copernicus, ecmwf, era5_land, evaporation, heat, lakes, precipitation, pressure, radiation, reanalysis, runoff, snow, soil_water, temperature, vegetation, wind https://storage.googleapis.com/earthengine-stac/catalog/ECMWF/ECMWF_ERA5_LAND_MONTHLY_BY_HOUR.json https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_BY_HOUR proprietary @@ -132,7 +132,7 @@ FAO/WAPOR/2/L1_NPP_D WAPOR Dekadal Net Primary Production 2.0 image_collection e FAO/WAPOR/2/L1_RET_D WAPOR Dekadal Reference Evapotranspiration 2.0 image_collection ee.ImageCollection('FAO/WAPOR/2/L1_RET_D') FAO UN 2009-01-01 2023-03-11 -30.15, -39.9953437, 65.13, 40.0044643 False agriculture, fao, wapor, water https://storage.googleapis.com/earthengine-stac/catalog/FAO/FAO_WAPOR_2_L1_RET_D.json https://developers.google.com/earth-engine/datasets/catalog/FAO_WAPOR_2_L1_RET_D proprietary FAO/WAPOR/2/L1_RET_E WAPOR Daily Reference Evapotranspiration 2.0 image_collection ee.ImageCollection('FAO/WAPOR/2/L1_RET_E') FAO UN 2009-01-01 2023-03-20 -30.15, -39.9953437, 65.13, 40.0044643 False agriculture, fao, wapor, water https://storage.googleapis.com/earthengine-stac/catalog/FAO/FAO_WAPOR_2_L1_RET_E.json https://developers.google.com/earth-engine/datasets/catalog/FAO_WAPOR_2_L1_RET_E proprietary FAO/WAPOR/2/L1_T_D WAPOR Dekadal Transpiration 2.0 image_collection ee.ImageCollection('FAO/WAPOR/2/L1_T_D') FAO UN 2009-01-01 2023-03-01 -30.0044643, -40.0044644, 65.0044644, 40.0044643 False agriculture, fao, wapor, water https://storage.googleapis.com/earthengine-stac/catalog/FAO/FAO_WAPOR_2_L1_T_D.json https://developers.google.com/earth-engine/datasets/catalog/FAO_WAPOR_2_L1_T_D proprietary -FIRMS FIRMS: Fire Information for Resource Management System image_collection ee.ImageCollection('FIRMS') NASA / LANCE / EOSDIS 2000-11-01 2024-12-08 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal https://storage.googleapis.com/earthengine-stac/catalog/FIRMS/FIRMS.json https://developers.google.com/earth-engine/datasets/catalog/FIRMS proprietary +FIRMS FIRMS: Fire Information for Resource Management System image_collection ee.ImageCollection('FIRMS') NASA / LANCE / EOSDIS 2000-11-01 2024-12-09 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal https://storage.googleapis.com/earthengine-stac/catalog/FIRMS/FIRMS.json https://developers.google.com/earth-engine/datasets/catalog/FIRMS proprietary FORMA/FORMA_500m FORMA Global Forest Watch Deforestation Alerts, 500m [deprecated] image ee.Image('FORMA/FORMA_500m') Global Forest Watch, World Resources Institute 2006-01-01 2015-06-10 -180, -90, 180, 90 True alerts, deforestation, forest, forma, geophysical, gfw, modis, nasa, wri https://storage.googleapis.com/earthengine-stac/catalog/FORMA/FORMA_FORMA_500m.json https://developers.google.com/earth-engine/datasets/catalog/FORMA_FORMA_500m proprietary Finland/MAVI/VV/50cm Finland NRG NLS orthophotos 50 cm by Mavi image_collection ee.ImageCollection('Finland/MAVI/VV/50cm') NLS orthophotos 2015-01-01 2018-01-01 18, 59, 29.2, 69.4 False falsecolor, finland, mavi, nrg, orthophoto https://storage.googleapis.com/earthengine-stac/catalog/Finland/Finland_MAVI_VV_50cm.json https://developers.google.com/earth-engine/datasets/catalog/Finland_MAVI_VV_50cm CC-BY-4.0 Finland/SMK/V/50cm Finland RGB NLS orthophotos 50 cm by SMK image_collection ee.ImageCollection('Finland/SMK/V/50cm') NLS orthophotos 2015-01-01 2023-01-01 18, 59, 29.2, 69.4 False finland, orthophoto, rgb, smk https://storage.googleapis.com/earthengine-stac/catalog/Finland/Finland_SMK_V_50cm.json https://developers.google.com/earth-engine/datasets/catalog/Finland_SMK_V_50cm proprietary @@ -148,8 +148,8 @@ GLIMS/20230607 GLIMS 2023: Global Land Ice Measurements From Space table ee.Feat GLIMS/current GLIMS Current: Global Land Ice Measurements From Space table ee.FeatureCollection('GLIMS/current') National Snow and Ice Data Center (NSDIC) 1750-01-01 2023-06-07 -180, -90, 180, 90 False glacier, glims, ice, landcover, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/GLIMS/GLIMS_current.json https://developers.google.com/earth-engine/datasets/catalog/GLIMS_current proprietary GLOBAL_FLOOD_DB/MODIS_EVENTS/V1 Global Flood Database v1 (2000-2018) image_collection ee.ImageCollection('GLOBAL_FLOOD_DB/MODIS_EVENTS/V1') Cloud to Street (C2S) / Dartmouth Flood Observatory (DFO) 2000-02-17 2018-12-10 -180, -90, 180, 90 False c2s, cloudtostreet, dartmouth, dfo, flood, gfd, inundation, surface, water https://storage.googleapis.com/earthengine-stac/catalog/GLOBAL_FLOOD_DB/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1.json https://developers.google.com/earth-engine/datasets/catalog/GLOBAL_FLOOD_DB_MODIS_EVENTS_V1 CC-BY-NC-4.0 GOOGLE/AirView/California_Unified_2015_2019 Google Street View Air Quality: High Resolution Air Pollution Mapping in California table ee.FeatureCollection('GOOGLE/AirView/California_Unified_2015_2019') Google / Aclima 2015-05-28 2019-06-07 -180, -90, 180, 90 False air_quality, nitrogen_dioxide, pollution https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_AirView_California_Unified_2015_2019.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_AirView_California_Unified_2015_2019 CC-BY-NC-4.0 -GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED Cloud Score+ S2_HARMONIZED V1 image_collection ee.ImageCollection('GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED') Google Earth Engine 2015-06-27 2024-12-09 -180, -90, 180, 90 False google, cloud, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED CC-BY-4.0 -GOOGLE/DYNAMICWORLD/V1 Dynamic World V1 image_collection ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1') World Resources Institute 2015-06-27 2024-12-09 -180, -90, 180, 90 False global, google, landcover, landuse, nrt, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_DYNAMICWORLD_V1.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1 CC-BY-4.0 +GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED Cloud Score+ S2_HARMONIZED V1 image_collection ee.ImageCollection('GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED') Google Earth Engine 2015-06-27 2024-12-10 -180, -90, 180, 90 False google, cloud, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_CLOUD_SCORE_PLUS_V1_S2_HARMONIZED CC-BY-4.0 +GOOGLE/DYNAMICWORLD/V1 Dynamic World V1 image_collection ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1') World Resources Institute 2015-06-27 2024-12-10 -180, -90, 180, 90 False global, google, landcover, landuse, nrt, sentinel2_derived https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_DYNAMICWORLD_V1.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1 CC-BY-4.0 GOOGLE/GLOBAL_CCDC/V1 Google Global Landsat-based CCDC Segments (1999-2019) image_collection ee.ImageCollection('GOOGLE/GLOBAL_CCDC/V1') Google 1999-01-01 2020-01-01 -180, -60, 180, 72 False change_detection, google, landcover, landsat_derived, landuse https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_GLOBAL_CCDC_V1.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_GLOBAL_CCDC_V1 CC-BY-4.0 GOOGLE/Research/open-buildings-temporal/v1 Open Buildings Temporal V1 image_collection ee.ImageCollection('GOOGLE/Research/open-buildings-temporal/v1') Google Research - Open Buildings 2016-06-30 2023-06-30 -180, -90, 180, 90 False building_height, height, annual, built_up, open_buildings, africa, asia, south_asia, southeast_asia, high_resolution https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_Research_open-buildings-temporal_v1.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings-temporal_v1 CC-BY-4.0 GOOGLE/Research/open-buildings/v1/polygons Open Buildings V1 Polygons [deprecated] table ee.FeatureCollection('GOOGLE/Research/open-buildings/v1/polygons') Google Research - Open Buildings 2021-04-30 2021-04-30 -180, -90, 180, 90 True africa, building, built_up, open_buildings, structure https://storage.googleapis.com/earthengine-stac/catalog/GOOGLE/GOOGLE_Research_open-buildings_v1_polygons.json https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v1_polygons CC-BY-4.0 @@ -207,20 +207,20 @@ JAXA/ALOS/PALSAR/YEARLY/SAR Global PALSAR-2/PALSAR Yearly Mosaic, version 1 imag JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH Global PALSAR-2/PALSAR Yearly Mosaic, version 2 image_collection ee.ImageCollection('JAXA/ALOS/PALSAR/YEARLY/SAR_EPOCH') JAXA EORC 2015-01-01 2023-01-01 -180, -90, 180, 90 False alos, alos2, eroc, jaxa, palsar, palsar2, sar https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_ALOS_PALSAR_YEARLY_SAR_EPOCH.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR_YEARLY_SAR_EPOCH proprietary JAXA/GCOM-C/L3/LAND/LAI/V1 GCOM-C/SGLI L3 Leaf Area Index (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V1 proprietary JAXA/GCOM-C/L3/LAND/LAI/V2 GCOM-C/SGLI L3 Leaf Area Index (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V2 proprietary -JAXA/GCOM-C/L3/LAND/LAI/V3 GCOM-C/SGLI L3 Leaf Area Index (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V3') Global Change Observation Mission (GCOM) 2021-11-29 2024-12-07 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V3 proprietary +JAXA/GCOM-C/L3/LAND/LAI/V3 GCOM-C/SGLI L3 Leaf Area Index (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LAI/V3') Global Change Observation Mission (GCOM) 2021-11-29 2024-12-08 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, lai, land, leaf_area_index https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LAI_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LAI_V3 proprietary JAXA/GCOM-C/L3/LAND/LST/V1 GCOM-C/SGLI L3 Land Surface Temperature (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V1 proprietary JAXA/GCOM-C/L3/LAND/LST/V2 GCOM-C/SGLI L3 Land Surface Temperature (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V2 proprietary -JAXA/GCOM-C/L3/LAND/LST/V3 GCOM-C/SGLI L3 Land Surface Temperature (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V3') Global Change Observation Mission (GCOM) 2021-11-29 2024-12-07 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V3 proprietary +JAXA/GCOM-C/L3/LAND/LST/V3 GCOM-C/SGLI L3 Land Surface Temperature (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/LAND/LST/V3') Global Change Observation Mission (GCOM) 2021-11-29 2024-12-08 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, land, land_surface_temperature, lst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_LAND_LST_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_LAND_LST_V3 proprietary JAXA/GCOM-C/L3/OCEAN/CHLA/V1 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V1 proprietary JAXA/GCOM-C/L3/OCEAN/CHLA/V2 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V2 proprietary -JAXA/GCOM-C/L3/OCEAN/CHLA/V3 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V3') Global Change Observation Mission (GCOM) 2021-11-29 2024-12-07 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V3 proprietary +JAXA/GCOM-C/L3/OCEAN/CHLA/V3 GCOM-C/SGLI L3 Chlorophyll-a Concentration (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/CHLA/V3') Global Change Observation Mission (GCOM) 2021-11-29 2024-12-08 -180, -90, 180, 90 False chla, chlorophyll_a, climate, g_portal, gcom, gcom_c, jaxa, ocean, ocean_color https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_CHLA_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_CHLA_V3 proprietary JAXA/GCOM-C/L3/OCEAN/SST/V1 GCOM-C/SGLI L3 Sea Surface Temperature (V1) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/SST/V1') Global Change Observation Mission (GCOM) 2018-01-01 2020-06-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, ocean, sea_surface_temperature, sst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_SST_V1.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_SST_V1 proprietary JAXA/GCOM-C/L3/OCEAN/SST/V2 GCOM-C/SGLI L3 Sea Surface Temperature (V2) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/SST/V2') Global Change Observation Mission (GCOM) 2018-01-01 2021-11-28 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, ocean, sea_surface_temperature, sst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_SST_V2.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_SST_V2 proprietary -JAXA/GCOM-C/L3/OCEAN/SST/V3 GCOM-C/SGLI L3 Sea Surface Temperature (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/SST/V3') Global Change Observation Mission (GCOM) 2018-01-22 2024-12-07 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, ocean, sea_surface_temperature, sst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_SST_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_SST_V3 proprietary -JAXA/GPM_L3/GSMaP/v6/operational GSMaP Operational: Global Satellite Mapping of Precipitation - V6 image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v6/operational') JAXA Earth Observation Research Center 2014-03-01 2024-12-09 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v6_operational.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v6_operational proprietary +JAXA/GCOM-C/L3/OCEAN/SST/V3 GCOM-C/SGLI L3 Sea Surface Temperature (V3) image_collection ee.ImageCollection('JAXA/GCOM-C/L3/OCEAN/SST/V3') Global Change Observation Mission (GCOM) 2018-01-22 2024-12-08 -180, -90, 180, 90 False climate, g_portal, gcom, gcom_c, jaxa, ocean, sea_surface_temperature, sst https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GCOM-C_L3_OCEAN_SST_V3.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GCOM-C_L3_OCEAN_SST_V3 proprietary +JAXA/GPM_L3/GSMaP/v6/operational GSMaP Operational: Global Satellite Mapping of Precipitation - V6 image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v6/operational') JAXA Earth Observation Research Center 2014-03-01 2024-12-10 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v6_operational.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v6_operational proprietary JAXA/GPM_L3/GSMaP/v6/reanalysis GSMaP Reanalysis: Global Satellite Mapping of Precipitation image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v6/reanalysis') JAXA Earth Observation Research Center 2000-03-01 2014-03-12 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v6_reanalysis.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v6_reanalysis proprietary -JAXA/GPM_L3/GSMaP/v7/operational GSMaP Operational: Global Satellite Mapping of Precipitation - V7 image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v7/operational') JAXA Earth Observation Research Center 2014-03-01 2024-12-09 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v7_operational.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v7_operational proprietary -JAXA/GPM_L3/GSMaP/v8/operational GSMaP Operational: Global Satellite Mapping of Precipitation - V8 image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v8/operational') JAXA Earth Observation Research Center 1998-01-01 2024-12-09 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v8_operational.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v8_operational proprietary +JAXA/GPM_L3/GSMaP/v7/operational GSMaP Operational: Global Satellite Mapping of Precipitation - V7 image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v7/operational') JAXA Earth Observation Research Center 2014-03-01 2024-12-10 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v7_operational.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v7_operational proprietary +JAXA/GPM_L3/GSMaP/v8/operational GSMaP Operational: Global Satellite Mapping of Precipitation - V8 image_collection ee.ImageCollection('JAXA/GPM_L3/GSMaP/v8/operational') JAXA Earth Observation Research Center 1998-01-01 2024-12-10 -180, -60, 180, 60 False climate, geophysical, gpm, hourly, jaxa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/JAXA/JAXA_GPM_L3_GSMaP_v8_operational.json https://developers.google.com/earth-engine/datasets/catalog/JAXA_GPM_L3_GSMaP_v8_operational proprietary JCU/Murray/GIC/global_tidal_wetland_change/2019 Murray Global Tidal Wetland Change v1.0 (1999-2019) image ee.Image('JCU/Murray/GIC/global_tidal_wetland_change/2019') Murray/JCU 1999-01-01 2019-12-31 -180, -90, 180, 90 False coastal, ecosystem, intertidal, landsat_derived, mangrove, murray, saltmarsh, tidal_flat, tidal_marsh https://storage.googleapis.com/earthengine-stac/catalog/JCU/JCU_Murray_GIC_global_tidal_wetland_change_2019.json https://developers.google.com/earth-engine/datasets/catalog/JCU_Murray_GIC_global_tidal_wetland_change_2019 CC-BY-4.0 JRC/CEMS_GLOFAS/FloodHazard/v1 JRC Global River Flood Hazard Maps Version 1 image_collection ee.ImageCollection('JRC/CEMS_GLOFAS/FloodHazard/v1') Joint Research Centre 2024-03-16 2024-03-16 -180, -90, 180, 90 False flood, monitoring, wri https://storage.googleapis.com/earthengine-stac/catalog/JRC/JRC_CEMS_GLOFAS_FloodHazard_v1.json https://developers.google.com/earth-engine/datasets/catalog/JRC_CEMS_GLOFAS_FloodHazard_v1 CC-BY-4.0 JRC/D5/EUCROPMAP/V1 EUCROPMAP image_collection ee.ImageCollection('JRC/D5/EUCROPMAP/V1') Joint Research Center (JRC) 2018-01-01 2022-01-01 -16.171875, 34.313433, 36.386719, 72.182526 False crop, eu, jrc, lucas, sentinel1_derived https://storage.googleapis.com/earthengine-stac/catalog/JRC/JRC_D5_EUCROPMAP_V1.json https://developers.google.com/earth-engine/datasets/catalog/JRC_D5_EUCROPMAP_V1 CC-BY-4.0 @@ -288,11 +288,11 @@ LANDSAT/COMPOSITES/C02/T1_L2_32DAY_EVI Landsat Collection 2 Tier 1 Level 2 32-Da LANDSAT/COMPOSITES/C02/T1_L2_32DAY_NBR Landsat Collection 2 Tier 1 Level 2 32-Day NBR Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY_NBR') Google 1984-01-01 2024-11-16 -180, -90, 180, 90 False landsat, nbrt, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NBR.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NBR proprietary LANDSAT/COMPOSITES/C02/T1_L2_32DAY_NDVI Landsat Collection 2 Tier 1 Level 2 32-Day NDVI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY_NDVI') Google 1984-01-01 2024-11-16 -180, -90, 180, 90 False landsat, ndvi, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NDVI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NDVI proprietary LANDSAT/COMPOSITES/C02/T1_L2_32DAY_NDWI Landsat Collection 2 Tier 1 Level 2 32-Day NDWI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY_NDWI') Google 1984-01-01 2024-11-16 -180, -90, 180, 90 False landsat, ndwi, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NDWI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_32DAY_NDWI proprietary -LANDSAT/COMPOSITES/C02/T1_L2_8DAY_BAI Landsat Collection 2 Tier 1 Level 2 8-Day BAI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_BAI') Google 1984-01-01 2024-12-02 -180, -90, 180, 90 False bai, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_BAI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_BAI proprietary -LANDSAT/COMPOSITES/C02/T1_L2_8DAY_EVI Landsat Collection 2 Tier 1 Level 2 8-Day EVI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_EVI') Google 1984-01-01 2024-12-02 -180, -90, 180, 90 False evi, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_EVI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_EVI proprietary -LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NBR Landsat Collection 2 Tier 1 Level 2 8-Day NBR Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NBR') Google 1984-01-01 2024-12-02 -180, -90, 180, 90 False landsat, nbrt, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NBR.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NBR proprietary -LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDVI Landsat Collection 2 Tier 1 Level 2 8-Day NDVI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDVI') Google 1984-01-01 2024-12-02 -180, -90, 180, 90 False landsat, ndvi, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDVI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDVI proprietary -LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDWI Landsat Collection 2 Tier 1 Level 2 8-Day NDWI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDWI') Google 1984-01-01 2024-12-02 -180, -90, 180, 90 False landsat, ndwi, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDWI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDWI proprietary +LANDSAT/COMPOSITES/C02/T1_L2_8DAY_BAI Landsat Collection 2 Tier 1 Level 2 8-Day BAI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_BAI') Google 1984-01-01 2024-12-10 -180, -90, 180, 90 False bai, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_BAI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_BAI proprietary +LANDSAT/COMPOSITES/C02/T1_L2_8DAY_EVI Landsat Collection 2 Tier 1 Level 2 8-Day EVI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_EVI') Google 1984-01-01 2024-12-10 -180, -90, 180, 90 False evi, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_EVI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_EVI proprietary +LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NBR Landsat Collection 2 Tier 1 Level 2 8-Day NBR Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NBR') Google 1984-01-01 2024-12-10 -180, -90, 180, 90 False landsat, nbrt, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NBR.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NBR proprietary +LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDVI Landsat Collection 2 Tier 1 Level 2 8-Day NDVI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDVI') Google 1984-01-01 2024-12-10 -180, -90, 180, 90 False landsat, ndvi, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDVI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDVI proprietary +LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDWI Landsat Collection 2 Tier 1 Level 2 8-Day NDWI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_8DAY_NDWI') Google 1984-01-01 2024-12-10 -180, -90, 180, 90 False landsat, ndwi, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDWI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_8DAY_NDWI proprietary LANDSAT/COMPOSITES/C02/T1_L2_ANNUAL_BAI Landsat Collection 2 Tier 1 Level 2 Annual BAI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_ANNUAL_BAI') USGS 1984-01-01 2024-01-01 -180, -90, 180, 90 False bai, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_BAI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_BAI proprietary LANDSAT/COMPOSITES/C02/T1_L2_ANNUAL_EVI Landsat Collection 2 Tier 1 Level 2 Annual EVI Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_ANNUAL_EVI') USGS 1984-01-01 2024-01-01 -180, -90, 180, 90 False evi, landsat, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_EVI.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_EVI proprietary LANDSAT/COMPOSITES/C02/T1_L2_ANNUAL_NBR Landsat Collection 2 Tier 1 Level 2 Annual NBR Composite image_collection ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_ANNUAL_NBR') USGS 1984-01-01 2024-01-01 -180, -90, 180, 90 False landsat, nbrt, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_NBR.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_COMPOSITES_C02_T1_L2_ANNUAL_NBR proprietary @@ -305,18 +305,18 @@ LANDSAT/GLS2005_L5 Landsat Global Land Survey 2005, Landsat 5 scenes image_colle LANDSAT/GLS2005_L7 Landsat Global Land Survey 2005, Landsat 7 scenes image_collection ee.ImageCollection('LANDSAT/GLS2005_L7') USGS 2003-07-29 2008-07-29 -180, -90, 180, 90 False etm, gls, l7, landsat, radiance, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_GLS2005_L7.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_GLS2005_L7 PDDL-1.0 LANDSAT/LC08/C02/T1 USGS Landsat 8 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1') USGS 2013-03-18 2024-12-08 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, oli_tirs, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1 PDDL-1.0 LANDSAT/LC08/C02/T1_L2 USGS Landsat 8 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') USGS 2013-03-18 2024-12-01 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l8sr, landsat, lasrc, lc08, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 proprietary -LANDSAT/LC08/C02/T1_RT USGS Landsat 8 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT') USGS 2013-03-18 2024-12-09 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, nrt, oli_tirs, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT PDDL-1.0 -LANDSAT/LC08/C02/T1_RT_TOA USGS Landsat 8 Collection 2 Tier 1 and Real-Time data TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA') USGS/Google 2013-03-18 2024-12-09 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT_TOA PDDL-1.0 +LANDSAT/LC08/C02/T1_RT USGS Landsat 8 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT') USGS 2013-03-18 2024-12-10 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, nrt, oli_tirs, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT PDDL-1.0 +LANDSAT/LC08/C02/T1_RT_TOA USGS Landsat 8 Collection 2 Tier 1 and Real-Time data TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_RT_TOA') USGS/Google 2013-03-18 2024-12-10 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_RT_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_RT_TOA PDDL-1.0 LANDSAT/LC08/C02/T1_TOA USGS Landsat 8 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA') USGS/Google 2013-03-18 2024-12-08 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_TOA PDDL-1.0 LANDSAT/LC08/C02/T2 USGS Landsat 8 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2') USGS 2021-10-28 2024-12-08 -180, -90, 180, 90 False c2, global, l8, landsat, lc8, oli_tirs, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2 PDDL-1.0 LANDSAT/LC08/C02/T2_L2 USGS Landsat 8 Level 2, Collection 2, Tier 2 image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2_L2') USGS 2013-03-18 2024-12-01 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l8sr, landsat, lasrc, lc08, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2_L2 proprietary -LANDSAT/LC08/C02/T2_TOA USGS Landsat 8 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2_TOA') USGS/Google 2021-10-28 2024-12-01 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2_TOA PDDL-1.0 -LANDSAT/LC09/C02/T1 USGS Landsat 9 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1') USGS 2021-10-31 2024-12-09 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1 PDDL-1.0 -LANDSAT/LC09/C02/T1_L2 USGS Landsat 9 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1_L2') USGS 2021-10-31 2024-12-05 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l9sr, landsat, lasrc, lc09, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2 proprietary +LANDSAT/LC08/C02/T2_TOA USGS Landsat 8 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC08/C02/T2_TOA') USGS/Google 2021-10-28 2024-12-08 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC08_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T2_TOA PDDL-1.0 +LANDSAT/LC09/C02/T1 USGS Landsat 9 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1') USGS 2021-10-31 2024-12-10 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1 PDDL-1.0 +LANDSAT/LC09/C02/T1_L2 USGS Landsat 9 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1_L2') USGS 2021-10-31 2024-12-06 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l9sr, landsat, lasrc, lc09, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_L2 proprietary LANDSAT/LC09/C02/T1_TOA USGS Landsat 9 Collection 2 Tier 1 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T1_TOA') USGS/Google 2021-10-31 2024-12-09 -180, -90, 180, 90 False c2, global, landsat, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T1_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T1_TOA PDDL-1.0 -LANDSAT/LC09/C02/T2 USGS Landsat 9 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2') USGS 2021-11-02 2024-12-09 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2 PDDL-1.0 +LANDSAT/LC09/C02/T2 USGS Landsat 9 Collection 2 Tier 2 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2') USGS 2021-11-02 2024-12-10 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, oli_tirs, radiance, t2, tier2, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2 PDDL-1.0 LANDSAT/LC09/C02/T2_L2 USGS Landsat 9 Level 2, Collection 2, Tier 2 image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2_L2') USGS 2021-10-31 2024-12-05 -180, -90, 180, 90 False cfmask, cloud, fmask, global, l9sr, landsat, lasrc, lc09, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2_L2 proprietary -LANDSAT/LC09/C02/T2_TOA USGS Landsat 9 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2_TOA') USGS/Google 2021-11-02 2024-12-08 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2_TOA PDDL-1.0 +LANDSAT/LC09/C02/T2_TOA USGS Landsat 9 Collection 2 Tier 2 TOA Reflectance image_collection ee.ImageCollection('LANDSAT/LC09/C02/T2_TOA') USGS/Google 2021-11-02 2024-12-09 -180, -90, 180, 90 False c2, global, l9, landsat, lc9, toa, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LC09_C02_T2_TOA.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC09_C02_T2_TOA PDDL-1.0 LANDSAT/LE07/C02/T1 USGS Landsat 7 Collection 2 Tier 1 Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1') USGS 1999-05-28 2024-01-19 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, radiance, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1 PDDL-1.0 LANDSAT/LE07/C02/T1_L2 USGS Landsat 7 Level 2, Collection 2, Tier 1 image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_L2') USGS 1999-05-28 2024-01-19 -180, -90, 180, 90 False cfmask, cloud, etm, fmask, global, landsat, lasrc, le07, lst, reflectance, sr, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_L2.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2 proprietary LANDSAT/LE07/C02/T1_RT USGS Landsat 7 Collection 2 Tier 1 and Real-Time data Raw Scenes image_collection ee.ImageCollection('LANDSAT/LE07/C02/T1_RT') USGS 1999-05-28 2024-01-19 -180, -90, 180, 90 False c2, etm, global, l7, landsat, le7, nrt, radiance, rt, t1, tier1, usgs https://storage.googleapis.com/earthengine-stac/catalog/LANDSAT/LANDSAT_LE07_C02_T1_RT.json https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_RT PDDL-1.0 @@ -439,7 +439,7 @@ MODIS/061/MOD09CMG MOD09CMG.061 Terra Surface Reflectance Daily L3 Global 0.05 D MODIS/061/MOD09GA MOD09GA.061 Terra Surface Reflectance Daily Global 1km and 500m image_collection ee.ImageCollection('MODIS/061/MOD09GA') NASA LP DAAC at the USGS EROS Center 2000-02-24 2024-12-07 -180, -90, 180, 90 False daily, global, mod09ga, modis, nasa, sr, surface_reflectance, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD09GA.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GA proprietary MODIS/061/MOD09GQ MOD09GQ.061 Terra Surface Reflectance Daily Global 250m image_collection ee.ImageCollection('MODIS/061/MOD09GQ') NASA LP DAAC at the USGS EROS Center 2000-02-24 2024-12-07 -180, -90, 180, 90 False daily, global, mod09gq, modis, nasa, sr, surface_reflectance, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD09GQ.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09GQ proprietary MODIS/061/MOD09Q1 MOD09Q1.061 Terra Surface Reflectance 8-Day Global 250m image_collection ee.ImageCollection('MODIS/061/MOD09Q1') NASA LP DAAC at the USGS EROS Center 2000-02-18 2024-11-24 -180, -90, 180, 90 False 8_day, global, mod09q1, modis, nasa, sr, surface_reflectance, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD09Q1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD09Q1 proprietary -MODIS/061/MOD10A1 MOD10A1.061 Terra Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MOD10A1') NASA NSIDC DAAC at CIRES 2000-02-24 2024-12-07 -180, -90, 180, 90 False albedo, daily, geophysical, global, mod10a1, modis, nasa, nsidc, snow, terra https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD10A1 proprietary +MODIS/061/MOD10A1 MOD10A1.061 Terra Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MOD10A1') NASA NSIDC DAAC at CIRES 2000-02-24 2024-12-08 -180, -90, 180, 90 False albedo, daily, geophysical, global, mod10a1, modis, nasa, nsidc, snow, terra https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD10A1 proprietary MODIS/061/MOD11A1 MOD11A1.061 Terra Land Surface Temperature and Emissivity Daily Global 1km image_collection ee.ImageCollection('MODIS/061/MOD11A1') NASA LP DAAC at the USGS EROS Center 2000-02-24 2024-12-05 -180, -90, 180, 90 False daily, emissivity, global, lst, mod11a1, modis, nasa, surface_temperature, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD11A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A1 proprietary MODIS/061/MOD11A2 MOD11A2.061 Terra Land Surface Temperature and Emissivity 8-Day Global 1km image_collection ee.ImageCollection('MODIS/061/MOD11A2') NASA LP DAAC at the USGS EROS Center 2000-02-18 2024-11-24 -180, -90, 180, 90 False 8_day, emissivity, global, lst, mod11a2, modis, nasa, surface_temperature, terra, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD11A2.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A2 proprietary MODIS/061/MOD13A1 MOD13A1.061 Terra Vegetation Indices 16-Day Global 500m image_collection ee.ImageCollection('MODIS/061/MOD13A1') NASA LP DAAC at the USGS EROS Center 2000-02-18 2024-11-16 -180, -90, 180, 90 False 16_day, evi, global, mod13a1, modis, nasa, ndvi, terra, usgs, vegetation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MOD13A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A1 proprietary @@ -466,7 +466,7 @@ MODIS/061/MYD09CMG MYD09CMG.061 Aqua Surface Reflectance Daily L3 Global 0.05 De MODIS/061/MYD09GA MYD09GA.061 Aqua Surface Reflectance Daily Global 1km and 500m image_collection ee.ImageCollection('MODIS/061/MYD09GA') NASA LP DAAC at the USGS EROS Center 2002-07-04 2024-12-07 -180, -90, 180, 90 False aqua, daily, global, modis, myd09ga, nasa, sr, surface_reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD09GA.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GA proprietary MODIS/061/MYD09GQ MYD09GQ.061 Aqua Surface Reflectance Daily Global 250m image_collection ee.ImageCollection('MODIS/061/MYD09GQ') NASA LP DAAC at the USGS EROS Center 2002-07-04 2024-12-07 -180, -90, 180, 90 False aqua, daily, global, modis, myd09gq, nasa, sr, surface_reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD09GQ.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09GQ proprietary MODIS/061/MYD09Q1 MYD09Q1.061 Aqua Surface Reflectance 8-Day Global 250m image_collection ee.ImageCollection('MODIS/061/MYD09Q1') NASA LP DAAC at the USGS EROS Center 2002-07-04 2024-11-24 -180, -90, 180, 90 False 8_day, aqua, global, modis, myd09q1, nasa, sr, surface_reflectance, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD09Q1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD09Q1 proprietary -MODIS/061/MYD10A1 MYD10A1.061 Aqua Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MYD10A1') NASA NSIDC DAAC at CIRES 2002-07-04 2024-12-07 -180, -90, 180, 90 False albedo, aqua, daily, geophysical, global, modis, myd10a1, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD10A1 proprietary +MODIS/061/MYD10A1 MYD10A1.061 Aqua Snow Cover Daily Global 500m image_collection ee.ImageCollection('MODIS/061/MYD10A1') NASA NSIDC DAAC at CIRES 2002-07-04 2024-12-08 -180, -90, 180, 90 False albedo, aqua, daily, geophysical, global, modis, myd10a1, nasa, nsidc, snow https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD10A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD10A1 proprietary MODIS/061/MYD11A1 MYD11A1.061 Aqua Land Surface Temperature and Emissivity Daily Global 1km image_collection ee.ImageCollection('MODIS/061/MYD11A1') NASA LP DAAC at the USGS EROS Center 2002-07-04 2024-12-07 -180, -90, 180, 90 False aqua, daily, emissivity, global, lst, modis, myd11a1, nasa, surface_temperature, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD11A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD11A1 proprietary MODIS/061/MYD11A2 MYD11A2.061 Aqua Land Surface Temperature and Emissivity 8-Day Global 1km image_collection ee.ImageCollection('MODIS/061/MYD11A2') NASA LP DAAC at the USGS EROS Center 2002-07-04 2024-11-24 -180, -90, 180, 90 False 8_day, aqua, emissivity, global, lst, modis, myd11a2, nasa, surface_temperature, usgs https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD11A2.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD11A2 proprietary MODIS/061/MYD13A1 MYD13A1.061 Aqua Vegetation Indices 16-Day Global 500m image_collection ee.ImageCollection('MODIS/061/MYD13A1') NASA LP DAAC at the USGS EROS Center 2002-07-04 2024-11-08 -180, -90, 180, 90 False 16_day, aqua, evi, global, modis, myd13a1, nasa, ndvi, usgs, vegetation https://storage.googleapis.com/earthengine-stac/catalog/MODIS/MODIS_061_MYD13A1.json https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD13A1 proprietary @@ -544,10 +544,10 @@ NASA/EMIT/L2B/CH4ENH Earth Surface Mineral Dust Source Investigation- Methane En NASA/EMIT/L2B/CH4PLM Earth Surface Mineral Dust Source Investigation- Methane Plume Complexes image_collection ee.ImageCollection('NASA/EMIT/L2B/CH4PLM') NASA Jet Propulsion Laboratory 2022-08-10 2024-10-26 -180, -90, 180, 90 False daily, emit, nasa, methane https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_EMIT_L2B_CH4PLM.json https://developers.google.com/earth-engine/datasets/catalog/NASA_EMIT_L2B_CH4PLM proprietary NASA/FLDAS/NOAH01/C/GL/M/V001 FLDAS: Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System image_collection ee.ImageCollection('NASA/FLDAS/NOAH01/C/GL/M/V001') NASA GES DISC at NASA Goddard Space Flight Center 1982-01-01 2024-10-01 -180, -60, 180, 90 False climate, evapotranspiration, famine, fldas, humidity, ldas, monthly, nasa, runoff, snow, soil_moisture, soil_temperature, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_FLDAS_NOAH01_C_GL_M_V001.json https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_NOAH01_C_GL_M_V001 proprietary NASA/GDDP-CMIP6 NEX-GDDP-CMIP6: NASA Earth Exchange Global Daily Downscaled Climate Projections image_collection ee.ImageCollection('NASA/GDDP-CMIP6') NASA / Climate Analytics Group 1950-01-01 2100-12-31 -180, -90, 180, 90 False cag, climate, gddp, geophysical, ipcc, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GDDP-CMIP6.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GDDP-CMIP6 various -NASA/GEOS-CF/v1/fcst/htf GEOS-CF fcst htf v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/htf') NASA / GMAO 2022-10-01 2024-12-04 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_htf.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_htf proprietary -NASA/GEOS-CF/v1/fcst/tavg1hr GEOS-CF fcst tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/tavg1hr') NASA / GMAO 2022-10-01 2024-12-04 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_tavg1hr proprietary -NASA/GEOS-CF/v1/rpl/htf GEOS-CF rpl htf v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/rpl/htf') NASA / GMAO 2018-01-01 2024-12-04 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_rpl_htf.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_htf proprietary -NASA/GEOS-CF/v1/rpl/tavg1hr GEOS-CF rpl tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/rpl/tavg1hr') NASA / GMAO 2018-01-01 2024-12-04 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_rpl_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_tavg1hr proprietary +NASA/GEOS-CF/v1/fcst/htf GEOS-CF fcst htf v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/htf') NASA / GMAO 2022-10-01 2024-12-09 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_htf.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_htf proprietary +NASA/GEOS-CF/v1/fcst/tavg1hr GEOS-CF fcst tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/fcst/tavg1hr') NASA / GMAO 2022-10-01 2024-12-09 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_fcst_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_fcst_tavg1hr proprietary +NASA/GEOS-CF/v1/rpl/htf GEOS-CF rpl htf v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/rpl/htf') NASA / GMAO 2018-01-01 2024-12-09 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_rpl_htf.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_htf proprietary +NASA/GEOS-CF/v1/rpl/tavg1hr GEOS-CF rpl tavg1hr v1: Goddard Earth Observing System Composition Forecast image_collection ee.ImageCollection('NASA/GEOS-CF/v1/rpl/tavg1hr') NASA / GMAO 2018-01-01 2024-12-09 -180, -90, 180, 90 False composition, forecast, geos, gmao, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GEOS-CF_v1_rpl_tavg1hr.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GEOS-CF_v1_rpl_tavg1hr proprietary NASA/GIMMS/3GV0 GIMMS NDVI From AVHRR Sensors (3rd Generation) image_collection ee.ImageCollection('NASA/GIMMS/3GV0') NASA/NOAA 1981-07-01 2013-12-16 -180, -90, 180, 90 False avhrr, gimms, nasa, ndvi, noaa, vegetation https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GIMMS_3GV0.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GIMMS_3GV0 proprietary NASA/GLDAS/V021/NOAH/G025/T3H GLDAS-2.1: Global Land Data Assimilation System image_collection ee.ImageCollection('NASA/GLDAS/V021/NOAH/G025/T3H') NASA GES DISC at NASA Goddard Space Flight Center 2000-01-01 2024-11-13 -180, -90, 180, 90 False 3_hourly, climate, evaporation, forcing, geophysical, gldas, humidity, ldas, nasa, precipitation, pressure, radiation, soil, soil_moisture, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GLDAS_V021_NOAH_G025_T3H.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H proprietary NASA/GLDAS/V022/CLSM/G025/DA1D GLDAS-2.2: Global Land Data Assimilation System image_collection ee.ImageCollection('NASA/GLDAS/V022/CLSM/G025/DA1D') NASA GES DISC at NASA Goddard Earth Sciences Data and Information Services Center 2003-01-01 2024-06-30 -180, -90, 180, 90 False 3_hourly, climate, evaporation, forcing, geophysical, gldas, humidity, ldas, nasa, precipitation, pressure, radiation, soil, soil_moisture, surface, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GLDAS_V022_CLSM_G025_DA1D.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V022_CLSM_G025_DA1D proprietary @@ -555,7 +555,7 @@ NASA/GLDAS/V20/NOAH/G025/T3H Reprocessed GLDAS-2.0: Global Land Data Assimilatio NASA/GPM_L3/IMERG_MONTHLY_V06 GPM: Monthly Global Precipitation Measurement (GPM) v6 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_MONTHLY_V06') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2021-09-01 -180, -90, 180, 90 False climate, geophysical, gpm, imerg, jaxa, monthly, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_MONTHLY_V06.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_MONTHLY_V06 proprietary NASA/GPM_L3/IMERG_MONTHLY_V07 GPM: Monthly Global Precipitation Measurement (GPM) vRelease 07 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_MONTHLY_V07') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2024-06-01 -180, -90, 180, 90 False climate, geophysical, gpm, imerg, jaxa, monthly, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_MONTHLY_V07.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_MONTHLY_V07 proprietary NASA/GPM_L3/IMERG_V06 GPM: Global Precipitation Measurement (GPM) Release 06 [deprecated] image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_V06') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2024-06-02 -180, -90, 180, 90 True climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_V06.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V06 proprietary -NASA/GPM_L3/IMERG_V07 GPM: Global Precipitation Measurement (GPM) Release 07 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_V07') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2024-12-09 -180, -90, 180, 90 False climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_V07.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V07 proprietary +NASA/GPM_L3/IMERG_V07 GPM: Global Precipitation Measurement (GPM) Release 07 image_collection ee.ImageCollection('NASA/GPM_L3/IMERG_V07') NASA GES DISC at NASA Goddard Space Flight Center 2000-06-01 2024-12-10 -180, -90, 180, 90 False climate, geophysical, gpm, half_hourly, imerg, jaxa, nasa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GPM_L3_IMERG_V07.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GPM_L3_IMERG_V07 proprietary NASA/GRACE/MASS_GRIDS/LAND GRACE Monthly Mass Grids - Land [deprecated] image_collection ee.ImageCollection('NASA/GRACE/MASS_GRIDS/LAND') NASA Jet Propulsion Laboratory 2002-04-01 2017-01-07 -180, -90, 180, 90 True crs, gfz, grace, gravity, jpl, land, mass, nasa, tellus, water https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GRACE_MASS_GRIDS_LAND.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GRACE_MASS_GRIDS_LAND proprietary NASA/GRACE/MASS_GRIDS/MASCON GRACE Monthly Mass Grids - Global Mascons [deprecated] image_collection ee.ImageCollection('NASA/GRACE/MASS_GRIDS/MASCON') NASA Jet Propulsion Laboratory 2002-03-31 2017-05-22 -180, -90, 180, 90 True grace, gravity, jpl, mascon, mass, nasa, tellus, water https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GRACE_MASS_GRIDS_MASCON.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GRACE_MASS_GRIDS_MASCON proprietary NASA/GRACE/MASS_GRIDS/MASCON_CRI GRACE Monthly Mass Grids - Global Mascon (CRI Filtered) [deprecated] image_collection ee.ImageCollection('NASA/GRACE/MASS_GRIDS/MASCON_CRI') NASA Jet Propulsion Laboratory 2002-03-31 2017-05-22 -180, -90, 180, 90 True grace, gravity, jpl, mascon, mass, nasa, tellus, water https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GRACE_MASS_GRIDS_MASCON_CRI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GRACE_MASS_GRIDS_MASCON_CRI proprietary @@ -573,14 +573,14 @@ NASA/GSFC/MERRA/rad/2 MERRA-2 M2T1NXRAD: Radiation Diagnostics V5.12.4 image_col NASA/GSFC/MERRA/slv/2 MERRA-2 M2T1NXSLV: Single-Level Diagnostics V5.12.4 image_collection ee.ImageCollection('NASA/GSFC/MERRA/slv/2') NASA/MERRA 1980-01-01 2024-11-01 -180, -90, 180, 90 False condensation, humidity, merra, nasa, omega, pressure, slv, temperature, vapor, water, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_GSFC_MERRA_slv_2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_GSFC_MERRA_slv_2 proprietary NASA/HLS/HLSL30/v002 HLSL30: HLS-2 Landsat Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m image_collection ee.ImageCollection('NASA/HLS/HLSL30/v002') NASA LP DAAC 2013-04-11 2024-12-05 -180, -90, 180, 90 False landsat, nasa, sentinel, usgs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_HLS_HLSL30_v002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_HLS_HLSL30_v002 proprietary NASA/JPL/global_forest_canopy_height_2005 Global Forest Canopy Height, 2005 image ee.Image('NASA/JPL/global_forest_canopy_height_2005') NASA/JPL 2005-05-20 2005-06-23 -180, -90, 180, 90 False canopy, forest, geophysical, glas, jpl, nasa https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_JPL_global_forest_canopy_height_2005.json https://developers.google.com/earth-engine/datasets/catalog/NASA_JPL_global_forest_canopy_height_2005 proprietary -NASA/LANCE/NOAA20_VIIRS/C2 VJ114IMGTDL_NRT Daily Raster: VIIRS (NOAA-20) Band 375m Active Fire image_collection ee.ImageCollection('NASA/LANCE/NOAA20_VIIRS/C2') NASA / LANCE / NOAA20_VIIRS 2023-10-08 2024-12-07 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal, viirs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_LANCE_NOAA20_VIIRS_C2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_LANCE_NOAA20_VIIRS_C2 proprietary -NASA/LANCE/SNPP_VIIRS/C2 VNP14IMGTDL_NRT Daily Raster: VIIRS (S-NPP) Band 375m Active Fire image_collection ee.ImageCollection('NASA/LANCE/SNPP_VIIRS/C2') NASA / LANCE / SNPP_VIIRS 2023-09-03 2024-12-07 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal, viirs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_LANCE_SNPP_VIIRS_C2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_LANCE_SNPP_VIIRS_C2 proprietary +NASA/LANCE/NOAA20_VIIRS/C2 VJ114IMGTDL_NRT Daily Raster: VIIRS (NOAA-20) Band 375m Active Fire image_collection ee.ImageCollection('NASA/LANCE/NOAA20_VIIRS/C2') NASA / LANCE / NOAA20_VIIRS 2023-10-08 2024-12-09 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal, viirs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_LANCE_NOAA20_VIIRS_C2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_LANCE_NOAA20_VIIRS_C2 proprietary +NASA/LANCE/SNPP_VIIRS/C2 VNP14IMGTDL_NRT Daily Raster: VIIRS (S-NPP) Band 375m Active Fire image_collection ee.ImageCollection('NASA/LANCE/SNPP_VIIRS/C2') NASA / LANCE / SNPP_VIIRS 2023-09-03 2024-12-09 -180, -90, 180, 90 False eosdis, fire, firms, geophysical, hotspot, lance, modis, nasa, thermal, viirs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_LANCE_SNPP_VIIRS_C2.json https://developers.google.com/earth-engine/datasets/catalog/NASA_LANCE_SNPP_VIIRS_C2 proprietary NASA/MEASURES/GFCC/TC/v3 Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30m image_collection ee.ImageCollection('NASA/MEASURES/GFCC/TC/v3') NASA LP DAAC at the USGS EROS Center 2000-01-01 2015-01-01 -180, -90, 180, 90 False forest, glcf, landsat_derived, nasa, umd https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_MEASURES_GFCC_TC_v3.json https://developers.google.com/earth-engine/datasets/catalog/NASA_MEASURES_GFCC_TC_v3 proprietary NASA/NASADEM_HGT/001 NASADEM: NASA NASADEM Digital Elevation 30m image ee.Image('NASA/NASADEM_HGT/001') NASA / USGS / JPL-Caltech 2000-02-11 2000-02-22 -180, -56, 180, 60 False dem, elevation, geophysical, nasa, nasadem, srtm, topography, usgs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NASADEM_HGT_001.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001 proprietary NASA/NEX-DCP30 NEX-DCP30: NASA Earth Exchange Downscaled Climate Projections image_collection ee.ImageCollection('NASA/NEX-DCP30') NASA / Climate Analytics Group 1950-01-01 2099-12-01 -125.03, 24.07, -66.47, 53.74 False cag, climate, cmip5, geophysical, ipcc, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NEX-DCP30.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-DCP30 proprietary NASA/NEX-DCP30_ENSEMBLE_STATS NEX-DCP30: Ensemble Stats for NASA Earth Exchange Downscaled Climate Projections image_collection ee.ImageCollection('NASA/NEX-DCP30_ENSEMBLE_STATS') NASA / Climate Analytics Group 1950-01-01 2099-12-01 -125.03, 24.07, -66.47, 49.93 False cag, climate, cmip5, geophysical, ipcc, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NEX-DCP30_ENSEMBLE_STATS.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-DCP30_ENSEMBLE_STATS proprietary NASA/NEX-GDDP NEX-GDDP: NASA Earth Exchange Global Daily Downscaled Climate Projections image_collection ee.ImageCollection('NASA/NEX-GDDP') NASA / Climate Analytics Group 1950-01-01 2100-12-31 -180, -90, 180, 90 False cag, climate, cmip5, gddp, geophysical, ipcc, nasa, nex, precipitation, temperature https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NEX-GDDP.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NEX-GDDP proprietary -NASA/NLDAS/FORA0125_H002 NLDAS-2: North American Land Data Assimilation System Forcing Fields image_collection ee.ImageCollection('NASA/NLDAS/FORA0125_H002') NASA GES DISC at NASA Goddard Space Flight Center 1979-01-01 2024-12-06 -125.15, 24.85, -66.85, 53.28 False climate, evaporation, forcing, geophysical, hourly, humidity, ldas, nasa, nldas, precipitation, pressure, radiation, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NLDAS_FORA0125_H002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NLDAS_FORA0125_H002 proprietary +NASA/NLDAS/FORA0125_H002 NLDAS-2: North American Land Data Assimilation System Forcing Fields image_collection ee.ImageCollection('NASA/NLDAS/FORA0125_H002') NASA GES DISC at NASA Goddard Space Flight Center 1979-01-01 2024-12-07 -125.15, 24.85, -66.85, 53.28 False climate, evaporation, forcing, geophysical, hourly, humidity, ldas, nasa, nldas, precipitation, pressure, radiation, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_NLDAS_FORA0125_H002.json https://developers.google.com/earth-engine/datasets/catalog/NASA_NLDAS_FORA0125_H002 proprietary NASA/OCEANDATA/MODIS-Aqua/L3SMI Ocean Color SMI: Standard Mapped Image MODIS Aqua Data image_collection ee.ImageCollection('NASA/OCEANDATA/MODIS-Aqua/L3SMI') NASA OB.DAAC at NASA Goddard Space Flight Center 2002-07-03 2022-02-28 -180, -90, 180, 90 False biology, chlorophyll, climate, modis, nasa, ocean, oceandata, reflectance, sst, temperature, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_OCEANDATA_MODIS-Aqua_L3SMI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI proprietary NASA/OCEANDATA/MODIS-Terra/L3SMI Ocean Color SMI: Standard Mapped Image MODIS Terra Data image_collection ee.ImageCollection('NASA/OCEANDATA/MODIS-Terra/L3SMI') NASA OB.DAAC at NASA Goddard Space Flight Center 2000-02-24 2022-02-28 -180, -90, 180, 90 False biology, chlorophyll, climate, modis, nasa, ocean, oceandata, reflectance, sst, temperature, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_OCEANDATA_MODIS-Terra_L3SMI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Terra_L3SMI proprietary NASA/OCEANDATA/SeaWiFS/L3SMI Ocean Color SMI: Standard Mapped Image SeaWiFS Data image_collection ee.ImageCollection('NASA/OCEANDATA/SeaWiFS/L3SMI') NASA OB.DAAC at NASA Goddard Space Flight Center 1997-09-04 2010-12-10 -180, -90, 180, 90 False biology, chlorophyll, climate, nasa, ocean, oceandata, reflectance, seawifs, temperature, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_OCEANDATA_SeaWiFS_L3SMI.json https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_SeaWiFS_L3SMI proprietary @@ -589,7 +589,7 @@ NASA/ORNL/DAYMET_V4 Daymet V4: Daily Surface Weather and Climatological Summarie NASA/ORNL/biomass_carbon_density/v1 Global Aboveground and Belowground Biomass Carbon Density Maps image_collection ee.ImageCollection('NASA/ORNL/biomass_carbon_density/v1') NASA ORNL DAAC at Oak Ridge National Laboratory 2010-01-01 2010-12-31 -180, -61.1, 180, 84 False aboveground, belowground, biomass, carbon, density, forest, nasa, ornl, vegetation https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_ORNL_biomass_carbon_density_v1.json https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_biomass_carbon_density_v1 proprietary NASA/ORNL/global_forest_classification_2020/V1 Global 2020 Forest Classification for IPCC Aboveground Biomass Tier 1 Estimates, V1 image_collection ee.ImageCollection('NASA/ORNL/global_forest_classification_2020/V1') NASA ORNL DAAC at Oak Ridge National Laboratory 2020-01-01 2020-12-31 -180, -90, 180, 90 False aboveground, biomass, carbon, classification, forest, ipcc, nasa, primary_forest, secondary_forest https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_ORNL_global_forest_classification_2020_V1.json https://developers.google.com/earth-engine/datasets/catalog/NASA_ORNL_global_forest_classification_2020_V1 proprietary NASA/SMAP/SPL3SMP_E/005 SPL3SMP_E.005 SMAP L3 Radiometer Global Daily 9 km Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL3SMP_E/005') Google and NSIDC 2015-03-31 2023-12-03 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL3SMP_E_005.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL3SMP_E_005 proprietary -NASA/SMAP/SPL3SMP_E/006 SPL3SMP_E.006 SMAP L3 Radiometer Global Daily 9 km Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL3SMP_E/006') Google and NSIDC 2023-12-04 2024-12-06 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL3SMP_E_006.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL3SMP_E_006 proprietary +NASA/SMAP/SPL3SMP_E/006 SPL3SMP_E.006 SMAP L3 Radiometer Global Daily 9 km Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL3SMP_E/006') Google and NSIDC 2023-12-04 2024-12-08 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL3SMP_E_006.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL3SMP_E_006 proprietary NASA/SMAP/SPL4SMGP/007 SPL4SMGP.007 SMAP L4 Global 3-hourly 9-km Surface and Root Zone Soil Moisture image_collection ee.ImageCollection('NASA/SMAP/SPL4SMGP/007') Google and NSIDC 2015-03-31 2024-12-05 -180, -84, 180, 84 False drought, nasa, smap, soil_moisture, surface, weather https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_SMAP_SPL4SMGP_007.json https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007 proprietary NASA/VIIRS/002/VNP09GA VNP09GA: VIIRS Surface Reflectance Daily 500m and 1km image_collection ee.ImageCollection('NASA/VIIRS/002/VNP09GA') NASA Land SIPS 2012-01-19 2024-12-05 -180, -90, 180, 90 False daily, nasa, noaa, npp, reflectance, sr, viirs, vnp09ga https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_VIIRS_002_VNP09GA.json https://developers.google.com/earth-engine/datasets/catalog/NASA_VIIRS_002_VNP09GA proprietary NASA/VIIRS/002/VNP09H1 VNP09H1: VIIRS Surface Reflectance 8-Day L3 Global 500m image_collection ee.ImageCollection('NASA/VIIRS/002/VNP09H1') NASA LP DAAC at the USGS EROS Center 2012-01-19 2024-11-24 -180, -90, 180, 90 False daily, nasa, noaa, npp, reflectance, sr, viirs https://storage.googleapis.com/earthengine-stac/catalog/NASA/NASA_VIIRS_002_VNP09H1.json https://developers.google.com/earth-engine/datasets/catalog/NASA_VIIRS_002_VNP09H1 proprietary @@ -601,9 +601,9 @@ NASA/VIIRS/002/VNP21A1N VNP21A1N.002: Night Land Surface Temperature and Emissiv NASA_USDA/HSL/SMAP10KM_soil_moisture NASA-USDA Enhanced SMAP Global Soil Moisture Data [deprecated] image_collection ee.ImageCollection('NASA_USDA/HSL/SMAP10KM_soil_moisture') NASA GSFC 2015-04-02 2022-08-02 -180, -60, 180, 90 True geophysical, hsl, nasa, smap, soil, soil_moisture, usda https://storage.googleapis.com/earthengine-stac/catalog/NASA_USDA/NASA_USDA_HSL_SMAP10KM_soil_moisture.json https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture proprietary NASA_USDA/HSL/SMAP_soil_moisture NASA-USDA SMAP Global Soil Moisture Data [deprecated] image_collection ee.ImageCollection('NASA_USDA/HSL/SMAP_soil_moisture') NASA GSFC 2015-04-02 2020-12-31 -180, -60, 180, 90 True geophysical, hsl, nasa, smap, soil, soil_moisture, usda https://storage.googleapis.com/earthengine-stac/catalog/NASA_USDA/NASA_USDA_HSL_SMAP_soil_moisture.json https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_SMAP_soil_moisture proprietary NASA_USDA/HSL/soil_moisture NASA-USDA Global Soil Moisture Data [deprecated] image_collection ee.ImageCollection('NASA_USDA/HSL/soil_moisture') NASA GSFC 2010-01-13 2020-12-31 -180, -60, 180, 90 True geophysical, hsl, nasa, smos, soil, soil_moisture, usda https://storage.googleapis.com/earthengine-stac/catalog/NASA_USDA/NASA_USDA_HSL_soil_moisture.json https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_soil_moisture proprietary -NCEP_RE/sea_level_pressure NCEP/NCAR Reanalysis Data, Sea-Level Pressure image_collection ee.ImageCollection('NCEP_RE/sea_level_pressure') NCEP 1948-01-01 2024-12-06 -180, -90, 180, 90 False atmosphere, climate, geophysical, ncep, noaa, pressure, reanalysis https://storage.googleapis.com/earthengine-stac/catalog/NCEP_RE/NCEP_RE_sea_level_pressure.json https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_sea_level_pressure proprietary -NCEP_RE/surface_temp NCEP/NCAR Reanalysis Data, Surface Temperature image_collection ee.ImageCollection('NCEP_RE/surface_temp') NCEP 1948-01-01 2024-12-06 -180, -90, 180, 90 False atmosphere, climate, geophysical, ncep, noaa, reanalysis, temperature https://storage.googleapis.com/earthengine-stac/catalog/NCEP_RE/NCEP_RE_surface_temp.json https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_surface_temp proprietary -NCEP_RE/surface_wv NCEP/NCAR Reanalysis Data, Water Vapor image_collection ee.ImageCollection('NCEP_RE/surface_wv') NCEP 1948-01-01 2024-12-06 -180, -90, 180, 90 False atmosphere, climate, geophysical, ncep, noaa, precipitable, reanalysis, vapor https://storage.googleapis.com/earthengine-stac/catalog/NCEP_RE/NCEP_RE_surface_wv.json https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_surface_wv proprietary +NCEP_RE/sea_level_pressure NCEP/NCAR Reanalysis Data, Sea-Level Pressure image_collection ee.ImageCollection('NCEP_RE/sea_level_pressure') NCEP 1948-01-01 2024-12-07 -180, -90, 180, 90 False atmosphere, climate, geophysical, ncep, noaa, pressure, reanalysis https://storage.googleapis.com/earthengine-stac/catalog/NCEP_RE/NCEP_RE_sea_level_pressure.json https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_sea_level_pressure proprietary +NCEP_RE/surface_temp NCEP/NCAR Reanalysis Data, Surface Temperature image_collection ee.ImageCollection('NCEP_RE/surface_temp') NCEP 1948-01-01 2024-12-07 -180, -90, 180, 90 False atmosphere, climate, geophysical, ncep, noaa, reanalysis, temperature https://storage.googleapis.com/earthengine-stac/catalog/NCEP_RE/NCEP_RE_surface_temp.json https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_surface_temp proprietary +NCEP_RE/surface_wv NCEP/NCAR Reanalysis Data, Water Vapor image_collection ee.ImageCollection('NCEP_RE/surface_wv') NCEP 1948-01-01 2024-12-07 -180, -90, 180, 90 False atmosphere, climate, geophysical, ncep, noaa, precipitable, reanalysis, vapor https://storage.googleapis.com/earthengine-stac/catalog/NCEP_RE/NCEP_RE_surface_wv.json https://developers.google.com/earth-engine/datasets/catalog/NCEP_RE_surface_wv proprietary NOAA/CDR/ATMOS_NEAR_SURFACE/V2 NOAA CDR: Ocean Near-Surface Atmospheric Properties, Version 2 image_collection ee.ImageCollection('NOAA/CDR/ATMOS_NEAR_SURFACE/V2') NOAA 1988-01-01 2021-08-31 -180, -90, 180, 90 False air_temperature, atmospheric, cdr, hourly, humidity, noaa, ocean, osb, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_ATMOS_NEAR_SURFACE_V2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_ATMOS_NEAR_SURFACE_V2 proprietary NOAA/CDR/AVHRR/AOT/V3 NOAA CDR AVHRR AOT: Daily Aerosol Optical Thickness Over Global Oceans, v03 [deprecated] image_collection ee.ImageCollection('NOAA/CDR/AVHRR/AOT/V3') NOAA 1981-01-01 2022-03-31 -180, -90, 180, 90 True aerosol, aot, atmospheric, avhrr, cdr, daily, noaa, optical, pollution https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_AVHRR_AOT_V3.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_AVHRR_AOT_V3 proprietary NOAA/CDR/AVHRR/AOT/V4 NOAA CDR AVHRR AOT: Daily Aerosol Optical Thickness Over Global Oceans, v04 image_collection ee.ImageCollection('NOAA/CDR/AVHRR/AOT/V4') NOAA 1981-01-01 2024-09-30 -180, -90, 180, 90 False aerosol, aot, atmospheric, avhrr, cdr, daily, noaa, optical, pollution https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_AVHRR_AOT_V4.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_AVHRR_AOT_V4 proprietary @@ -616,38 +616,38 @@ NOAA/CDR/AVHRR/SR/V5 NOAA CDR AVHRR: Surface Reflectance, Version 5 image_collec NOAA/CDR/GRIDSAT-B1/V2 NOAA CDR GRIDSAT-B1: Geostationary IR Channel Brightness Temperature image_collection ee.ImageCollection('NOAA/CDR/GRIDSAT-B1/V2') NOAA 1980-01-01 2024-03-31 -180, -90, 180, 90 False brightness, cdr, fundamental, geostationary, infrared, isccp, noaa, reflectance, sr https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_GRIDSAT-B1_V2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_GRIDSAT-B1_V2 proprietary NOAA/CDR/HEAT_FLUXES/V2 NOAA CDR: Ocean Heat Fluxes, Version 2 image_collection ee.ImageCollection('NOAA/CDR/HEAT_FLUXES/V2') NOAA 1988-01-01 2021-08-31 -180, -90, 180, 90 False atmospheric, cdr, flux, heat, hourly, noaa, ocean, osb https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_HEAT_FLUXES_V2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_HEAT_FLUXES_V2 proprietary NOAA/CDR/OISST/V2 NOAA CDR OISST v2: Optimum Interpolation Sea Surface Temperature [deprecated] image_collection ee.ImageCollection('NOAA/CDR/OISST/V2') NOAA 1981-09-01 2020-04-26 -180, -90, 180, 90 True avhrr, cdr, daily, ice, noaa, ocean, oisst, real_time, sst, temperature https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_OISST_V2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_OISST_V2 proprietary -NOAA/CDR/OISST/V2_1 NOAA CDR OISST v02r01: Optimum Interpolation Sea Surface Temperature image_collection ee.ImageCollection('NOAA/CDR/OISST/V2_1') NOAA 1981-09-01 2024-12-07 -180, -90, 180, 90 False avhrr, cdr, daily, ice, noaa, ocean, oisst, real_time, sst, temperature https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_OISST_V2_1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_OISST_V2_1 proprietary +NOAA/CDR/OISST/V2_1 NOAA CDR OISST v02r01: Optimum Interpolation Sea Surface Temperature image_collection ee.ImageCollection('NOAA/CDR/OISST/V2_1') NOAA 1981-09-01 2024-12-08 -180, -90, 180, 90 False avhrr, cdr, daily, ice, noaa, ocean, oisst, real_time, sst, temperature https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_OISST_V2_1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_OISST_V2_1 proprietary NOAA/CDR/PATMOSX/V53 NOAA CDR PATMOSX: Cloud Properties, Reflectance, and Brightness Temperatures, Version 5.3 image_collection ee.ImageCollection('NOAA/CDR/PATMOSX/V53') NOAA 1979-01-01 2022-01-01 -180, -90, 180, 90 False atmospheric, avhrr, brightness, cdr, cloud, metop, noaa, optical, poes, reflectance, temperature https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_PATMOSX_V53.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_PATMOSX_V53 proprietary NOAA/CDR/SST_PATHFINDER/V53 NOAA AVHRR Pathfinder Version 5.3 Collated Global 4km Sea Surface Temperature image_collection ee.ImageCollection('NOAA/CDR/SST_PATHFINDER/V53') NOAA 1981-08-24 2023-12-30 -180, -90, 180, 90 False avhrr, noaa, pathfinder, sea_ice, sst, temperature, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_SST_PATHFINDER_V53.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_SST_PATHFINDER_V53 proprietary NOAA/CDR/SST_WHOI/V2 NOAA CDR WHOI: Sea Surface Temperature, Version 2 image_collection ee.ImageCollection('NOAA/CDR/SST_WHOI/V2') NOAA 1988-01-01 2021-08-31 -180, -90, 180, 90 False atmospheric, cdr, hourly, noaa, ocean, oisst, osb, sst, whoi https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CDR_SST_WHOI_V2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_SST_WHOI_V2 proprietary -NOAA/CFSR CFSR: Climate Forecast System Reanalysis image_collection ee.ImageCollection('NOAA/CFSR') NOAA NWS National Centers for Environmental Prediction (NCEP) 2018-12-13 2024-12-09 -180, -90, 180, 90 False climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CFSR.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CFSR proprietary -NOAA/CFSV2/FOR6H CFSV2: NCEP Climate Forecast System Version 2, 6-Hourly Products image_collection ee.ImageCollection('NOAA/CFSV2/FOR6H') NOAA NWS National Centers for Environmental Prediction (NCEP) 1979-01-01 2024-12-09 -180, -90, 180, 90 False climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CFSV2_FOR6H.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CFSV2_FOR6H proprietary -NOAA/CPC/Precipitation CPC Global Unified Gauge-Based Analysis of Daily Precipitation image_collection ee.ImageCollection('NOAA/CPC/Precipitation') NOAA Physical Sciences Laboratory 2006-01-01 2024-12-07 -180, -90, 180, 90 False daily, noaa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CPC_Precipitation.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CPC_Precipitation proprietary -NOAA/CPC/Temperature CPC Global Unified Temperature image_collection ee.ImageCollection('NOAA/CPC/Temperature') NOAA Physical Sciences Laboratory 1979-01-01 2024-12-08 -180, -90, 180, 90 False daily, noaa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CPC_Temperature.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CPC_Temperature proprietary +NOAA/CFSR CFSR: Climate Forecast System Reanalysis image_collection ee.ImageCollection('NOAA/CFSR') NOAA NWS National Centers for Environmental Prediction (NCEP) 2018-12-13 2024-12-10 -180, -90, 180, 90 False climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CFSR.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CFSR proprietary +NOAA/CFSV2/FOR6H CFSV2: NCEP Climate Forecast System Version 2, 6-Hourly Products image_collection ee.ImageCollection('NOAA/CFSV2/FOR6H') NOAA NWS National Centers for Environmental Prediction (NCEP) 1979-01-01 2024-12-10 -180, -90, 180, 90 False climate, daylight, flux, forecast, geophysical, ncep, noaa, nws, precipitation, radiation, snow, temperature, vapor, water, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CFSV2_FOR6H.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CFSV2_FOR6H proprietary +NOAA/CPC/Precipitation CPC Global Unified Gauge-Based Analysis of Daily Precipitation image_collection ee.ImageCollection('NOAA/CPC/Precipitation') NOAA Physical Sciences Laboratory 2006-01-01 2024-12-08 -180, -90, 180, 90 False daily, noaa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CPC_Precipitation.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CPC_Precipitation proprietary +NOAA/CPC/Temperature CPC Global Unified Temperature image_collection ee.ImageCollection('NOAA/CPC/Temperature') NOAA Physical Sciences Laboratory 1979-01-01 2024-12-09 -180, -90, 180, 90 False daily, noaa, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_CPC_Temperature.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_CPC_Temperature proprietary NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4 DMSP OLS: Global Radiance-Calibrated Nighttime Lights Version 4, Defense Meteorological Program Operational Linescan System image_collection ee.ImageCollection('NOAA/DMSP-OLS/CALIBRATED_LIGHTS_V4') Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines 1996-03-16 2011-07-31 -180, -65, 180, 75 False calibrated, dmsp, eog, imagery, lights, nighttime, ols, radiance, visible, yearly https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_DMSP-OLS_CALIBRATED_LIGHTS_V4.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_CALIBRATED_LIGHTS_V4 proprietary NOAA/DMSP-OLS/NIGHTTIME_LIGHTS DMSP OLS: Nighttime Lights Time Series Version 4, Defense Meteorological Program Operational Linescan System image_collection ee.ImageCollection('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS') Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines 1992-01-01 2014-01-01 -180, -65, 180, 75 False dmsp, eog, imagery, lights, nighttime, ols, visible, yearly https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS proprietary -NOAA/GFS0P25 GFS: Global Forecast System 384-Hour Predicted Atmosphere Data image_collection ee.ImageCollection('NOAA/GFS0P25') NOAA/NCEP/EMC 2015-07-01 2024-12-09 -180, -90, 180, 90 False climate, cloud, emc, flux, forecast, geophysical, gfs, humidity, ncep, noaa, precipitation, radiation, temperature, vapor, weather, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GFS0P25.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GFS0P25 proprietary -NOAA/GOES/16/FDCC GOES-16 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/16/FDCC') NOAA 2017-05-24 2024-12-09 -152.11, 14, -49.18, 56.77 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCC proprietary -NOAA/GOES/16/FDCF GOES-16 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/FDCF') NOAA 2017-05-24 2024-12-09 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCF proprietary -NOAA/GOES/16/MCMIPC GOES-16 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPC') NOAA 2017-07-10 2024-12-09 -152.11, 14, -49.18, 56.77 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPC proprietary -NOAA/GOES/16/MCMIPF GOES-16 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPF') NOAA 2017-07-10 2024-12-09 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPF proprietary -NOAA/GOES/16/MCMIPM GOES-16 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Mesoscale image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPM') NOAA 2017-07-10 2024-12-09 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPM proprietary +NOAA/GFS0P25 GFS: Global Forecast System 384-Hour Predicted Atmosphere Data image_collection ee.ImageCollection('NOAA/GFS0P25') NOAA/NCEP/EMC 2015-07-01 2024-12-10 -180, -90, 180, 90 False climate, cloud, emc, flux, forecast, geophysical, gfs, humidity, ncep, noaa, precipitation, radiation, temperature, vapor, weather, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GFS0P25.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GFS0P25 proprietary +NOAA/GOES/16/FDCC GOES-16 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/16/FDCC') NOAA 2017-05-24 2024-12-10 -152.11, 14, -49.18, 56.77 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCC proprietary +NOAA/GOES/16/FDCF GOES-16 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/FDCF') NOAA 2017-05-24 2024-12-10 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_16, goes_east, goes_r, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_FDCF proprietary +NOAA/GOES/16/MCMIPC GOES-16 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPC') NOAA 2017-07-10 2024-12-10 -152.11, 14, -49.18, 56.77 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPC proprietary +NOAA/GOES/16/MCMIPF GOES-16 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPF') NOAA 2017-07-10 2024-12-10 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPF proprietary +NOAA/GOES/16/MCMIPM GOES-16 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Mesoscale image_collection ee.ImageCollection('NOAA/GOES/16/MCMIPM') NOAA 2017-07-10 2024-12-10 -180, -90, 180, 90 False abi, climate, goes, goes_16, goes_east, goes_r, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_16_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_16_MCMIPM proprietary NOAA/GOES/17/FDCC GOES-17 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/17/FDCC') NOAA 2018-08-27 2023-01-10 -180, 14.57, 180, 53.51 False abi, climate, fdc, fire, goes, goes_17, goes_s, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_FDCC proprietary NOAA/GOES/17/FDCF GOES-17 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/17/FDCF') NOAA 2018-08-27 2023-01-10 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_17, goes_s, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_FDCF proprietary NOAA/GOES/17/MCMIPC GOES-17 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/17/MCMIPC') NOAA 2018-12-04 2023-01-10 -180, 14.57, 180, 53.51 False abi, climate, goes, goes_17, goes_s, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_MCMIPC proprietary NOAA/GOES/17/MCMIPF GOES-17 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/17/MCMIPF') NOAA 2018-12-04 2023-01-10 -180, -90, 180, 90 False abi, climate, goes, goes_17, goes_s, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_MCMIPF proprietary NOAA/GOES/17/MCMIPM GOES-17 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/17/MCMIPM') NOAA 2018-12-04 2023-01-10 -180, -90, 180, 90 False abi, climate, goes, goes_17, goes_s, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_17_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_17_MCMIPM proprietary -NOAA/GOES/18/FDCC GOES-18 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/18/FDCC') NOAA 2022-10-13 2024-12-09 -180, 14.57, 180, 53.51 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCC proprietary -NOAA/GOES/18/FDCF GOES-18 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/FDCF') NOAA 2022-10-13 2024-12-09 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCF proprietary -NOAA/GOES/18/MCMIPC GOES-18 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPC') NOAA 2018-12-04 2024-12-09 -180, 14.57, 180, 53.51 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPC proprietary -NOAA/GOES/18/MCMIPF GOES-18 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPF') NOAA 2018-12-04 2024-12-09 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPF proprietary -NOAA/GOES/18/MCMIPM GOES-18 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPM') NOAA 2018-12-04 2024-12-09 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPM proprietary +NOAA/GOES/18/FDCC GOES-18 FDCC Series ABI Level 2 Fire/Hot Spot Characterization CONUS image_collection ee.ImageCollection('NOAA/GOES/18/FDCC') NOAA 2022-10-13 2024-12-10 -180, 14.57, 180, 53.51 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCC proprietary +NOAA/GOES/18/FDCF GOES-18 FDCF Series ABI Level 2 Fire/Hot Spot Characterization Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/FDCF') NOAA 2022-10-13 2024-12-10 -180, -90, 180, 90 False abi, climate, fdc, fire, goes, goes_18, goes_t, goes_west, hotspot, nesdis, noaa, ospo, wildfire https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_FDCF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_FDCF proprietary +NOAA/GOES/18/MCMIPC GOES-18 MCMIPC Series ABI Level 2 Cloud and Moisture Imagery CONUS image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPC') NOAA 2018-12-04 2024-12-10 -180, 14.57, 180, 53.51 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPC.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPC proprietary +NOAA/GOES/18/MCMIPF GOES-18 MCMIPF Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPF') NOAA 2018-12-04 2024-12-10 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPF.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPF proprietary +NOAA/GOES/18/MCMIPM GOES-18 MCMIPM Series ABI Level 2 Cloud and Moisture Imagery Full Disk image_collection ee.ImageCollection('NOAA/GOES/18/MCMIPM') NOAA 2018-12-04 2024-12-10 -180, -90, 180, 90 False abi, climate, goes, goes_18, goes_t, goes_west, mcmip, nesdis, noaa, ospo, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_GOES_18_MCMIPM.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_GOES_18_MCMIPM proprietary NOAA/IBTrACS/v4 International Best Track Archive for Climate Stewardship Project table ee.FeatureCollection('NOAA/IBTrACS/v4') NOAA NCEI 1842-10-25 2024-05-19 -180, 0.4, 180, 63.1 False hurricane, noaa, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_IBTrACS_v4.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_IBTrACS_v4 proprietary NOAA/NCEP_DOE_RE2/total_cloud_coverage NCEP-DOE Reanalysis 2 (Gaussian Grid), Total Cloud Coverage image_collection ee.ImageCollection('NOAA/NCEP_DOE_RE2/total_cloud_coverage') NOAA 1979-01-01 2024-11-30 -180, -90, 180, 90 False atmosphere, climate, cloud, geophysical, ncep, noaa, reanalysis https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NCEP_DOE_RE2_total_cloud_coverage.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NCEP_DOE_RE2_total_cloud_coverage proprietary NOAA/NGDC/ETOPO1 ETOPO1: Global 1 Arc-Minute Elevation image ee.Image('NOAA/NGDC/ETOPO1') NOAA 2008-08-01 2008-08-01 -180, -90, 180, 90 False bedrock, dem, elevation, geophysical, ice, noaa, topography https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NGDC_ETOPO1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NGDC_ETOPO1 proprietary NOAA/NHC/HURDAT2/atlantic NOAA NHC HURDAT2 Atlantic Hurricane Catalog table ee.FeatureCollection('NOAA/NHC/HURDAT2/atlantic') NOAA NHC 1851-06-25 2018-11-04 -109.5, 7.2, 63, 81 False hurricane, nhc, noaa, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NHC_HURDAT2_atlantic.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NHC_HURDAT2_atlantic proprietary NOAA/NHC/HURDAT2/pacific NOAA NHC HURDAT2 Pacific Hurricane Catalog table ee.FeatureCollection('NOAA/NHC/HURDAT2/pacific') NOAA NHC 1949-06-11 2018-11-09 -180, 0.4, 180, 63.1 False hurricane, nhc, noaa, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NHC_HURDAT2_pacific.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NHC_HURDAT2_pacific proprietary -NOAA/NWS/RTMA RTMA: Real-Time Mesoscale Analysis image_collection ee.ImageCollection('NOAA/NWS/RTMA') NOAA/NWS 2011-01-01 2024-12-09 -130.17, 20.15, -60.81, 52.91 False climate, cloud, geophysical, humidity, noaa, nws, precipitation, pressure, rtma, surface, temperature, visibility, weather, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NWS_RTMA.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NWS_RTMA proprietary +NOAA/NWS/RTMA RTMA: Real-Time Mesoscale Analysis image_collection ee.ImageCollection('NOAA/NWS/RTMA') NOAA/NWS 2011-01-01 2024-12-10 -130.17, 20.15, -60.81, 52.91 False climate, cloud, geophysical, humidity, noaa, nws, precipitation, pressure, rtma, surface, temperature, visibility, weather, wind https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_NWS_RTMA.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_NWS_RTMA proprietary NOAA/PERSIANN-CDR PERSIANN-CDR: Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record image_collection ee.ImageCollection('NOAA/PERSIANN-CDR') NOAA NCDC 1983-01-01 2024-03-31 -180, -60, 180, 60 False cdr, climate, geophysical, ncdc, noaa, persiann, precipitation, weather https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_PERSIANN-CDR.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_PERSIANN-CDR proprietary NOAA/VIIRS/001/VNP09GA VNP09GA: VIIRS Surface Reflectance Daily 500m and 1km [deprecated] image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP09GA') NASA LP DAAC at the USGS EROS Center 2012-01-19 2024-06-16 -180, -90, 180, 90 True daily, nasa, noaa, npp, reflectance, sr, viirs, vnp09ga https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP09GA.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP09GA proprietary NOAA/VIIRS/001/VNP09H1 VNP09H1: VIIRS Surface Reflectance 8-Day L3 Global 500m [deprecated] image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP09H1') NASA LP DAAC at the USGS EROS Center 2012-01-19 2024-06-09 -180, -90, 180, 90 True daily, nasa, noaa, npp, reflectance, sr, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP09H1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP09H1 proprietary @@ -659,7 +659,7 @@ NOAA/VIIRS/001/VNP21A1N VNP21A1N.001: Night Land Surface Temperature and Emissiv NOAA/VIIRS/001/VNP22Q2 VNP22Q2: Land Surface Phenology Yearly L3 Global 500m SIN Grid image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP22Q2') NASA LP DAAC at the USGS EROS Center 2013-01-01 2022-01-01 -180, -90, 180, 90 False land, nasa, ndvi, noaa, npp, onset_greenness, phenology, surface, vegetation, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP22Q2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP22Q2 proprietary NOAA/VIIRS/001/VNP43IA1 VNP43IA1: BRDF/Albedo Model Parameters Daily L3 Global 500m SIN Grid image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP43IA1') NASA LP DAAC at the USGS EROS Center 2012-01-17 2024-06-09 -180, -90, 180, 90 False land, nasa, noaa, surface, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP43IA1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP43IA1 proprietary NOAA/VIIRS/001/VNP43IA2 VNP43IA2: BRDF/Albedo Quality Daily L3 Global 500m SIN Grid image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP43IA2') NASA LP DAAC at the USGS EROS Center 2012-01-17 2024-06-09 -180, -90, 180, 90 False land, nasa, noaa, surface, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP43IA2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP43IA2 proprietary -NOAA/VIIRS/001/VNP46A1 VNP46A1: VIIRS Daily Gridded Day Night Band 500m Linear Lat Lon Grid Night image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP46A1') NASA LAADS DAAC 2012-01-19 2024-12-05 -180, -90, 180, 90 False daily, dnb, nasa, noaa, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP46A1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP46A1 proprietary +NOAA/VIIRS/001/VNP46A1 VNP46A1: VIIRS Daily Gridded Day Night Band 500m Linear Lat Lon Grid Night image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP46A1') NASA LAADS DAAC 2012-01-19 2024-12-08 -180, -90, 180, 90 False daily, dnb, nasa, noaa, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP46A1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP46A1 proprietary NOAA/VIIRS/001/VNP46A2 VNP46A2: VIIRS Lunar Gap-Filled BRDF Nighttime Lights Daily L3 Global 500m image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP46A2') NASA LAADS DAAC 2012-01-19 2024-11-28 -180, -90, 180, 90 False brdf, daily, nasa, noaa, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP46A2.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP46A2 proprietary NOAA/VIIRS/001/VNP64A1 VNP64A1: Burned Area Monthly L4 Global 500m SIN Grid image_collection ee.ImageCollection('NOAA/VIIRS/001/VNP64A1') NASA LP DAAC at the USGS EROS Center 2014-01-01 2019-01-01 -180, -90, 180, 90 False burn, change_detection, land, nasa, noaa, surface, viirs https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_001_VNP64A1.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_001_VNP64A1 proprietary NOAA/VIIRS/DNB/ANNUAL_V21 VIIRS Nighttime Day/Night Annual Band Composites V2.1 image_collection ee.ImageCollection('NOAA/VIIRS/DNB/ANNUAL_V21') Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines 2012-04-01 2021-01-01 -180, -65, 180, 75 False annual, dnb, eog, lights, nighttime, noaa, viirs, visible https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_DNB_ANNUAL_V21.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_ANNUAL_V21 proprietary @@ -668,7 +668,7 @@ NOAA/VIIRS/DNB/MONTHLY_V1/VCMCFG VIIRS Nighttime Day/Night Band Composites Versi NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG VIIRS Stray Light Corrected Nighttime Day/Night Band Composites Version 1 image_collection ee.ImageCollection('NOAA/VIIRS/DNB/MONTHLY_V1/VCMSLCFG') Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines 2014-01-01 2024-07-01 -180, -65, 180, 75 False dnb, eog, lights, monthly, nighttime, noaa, stray_light, viirs, visible https://storage.googleapis.com/earthengine-stac/catalog/NOAA/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG.json https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG proprietary NRCan/CDEM Canadian Digital Elevation Model image_collection ee.ImageCollection('NRCan/CDEM') NRCan 1945-01-01 2011-01-01 -142, 41, -52, 84 False canada, cdem, dem, elevation, geophysical, nrcan, topography https://storage.googleapis.com/earthengine-stac/catalog/NRCan/NRCan_CDEM.json https://developers.google.com/earth-engine/datasets/catalog/NRCan_CDEM OGL-Canada-2.0 Netherlands/Beeldmateriaal/LUCHTFOTO_RGB Netherlands orthophotos image_collection ee.ImageCollection('Netherlands/Beeldmateriaal/LUCHTFOTO_RGB') Beeldmateriaal Nederland 2021-01-01 2022-12-31 3.2, 50.75, 7.22, 53.7 False orthophoto, rgb, netherlands https://storage.googleapis.com/earthengine-stac/catalog/Netherlands/Netherlands_Beeldmateriaal_LUCHTFOTO_RGB.json https://developers.google.com/earth-engine/datasets/catalog/Netherlands_Beeldmateriaal_LUCHTFOTO_RGB CC-BY-4.0 -OREGONSTATE/PRISM/AN81d PRISM Daily Spatial Climate Dataset AN81d image_collection ee.ImageCollection('OREGONSTATE/PRISM/AN81d') PRISM / OREGONSTATE 1981-01-01 2024-12-06 -125, 24, -66, 50 False climate, daily, geophysical, oregonstate, precipitation, pressure, prism, temperature, vapor, weather https://storage.googleapis.com/earthengine-stac/catalog/OREGONSTATE/OREGONSTATE_PRISM_AN81d.json https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d proprietary +OREGONSTATE/PRISM/AN81d PRISM Daily Spatial Climate Dataset AN81d image_collection ee.ImageCollection('OREGONSTATE/PRISM/AN81d') PRISM / OREGONSTATE 1981-01-01 2024-12-07 -125, 24, -66, 50 False climate, daily, geophysical, oregonstate, precipitation, pressure, prism, temperature, vapor, weather https://storage.googleapis.com/earthengine-stac/catalog/OREGONSTATE/OREGONSTATE_PRISM_AN81d.json https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81d proprietary OREGONSTATE/PRISM/AN81m PRISM Monthly Spatial Climate Dataset AN81m image_collection ee.ImageCollection('OREGONSTATE/PRISM/AN81m') PRISM / OREGONSTATE 1895-01-01 2024-11-01 -125, 24, -66, 50 False climate, geophysical, monthly, oregonstate, precipitation, pressure, prism, temperature, vapor, weather https://storage.googleapis.com/earthengine-stac/catalog/OREGONSTATE/OREGONSTATE_PRISM_AN81m.json https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m proprietary OREGONSTATE/PRISM/Norm81m PRISM Long-Term Average Climate Dataset Norm81m [deprecated] image_collection ee.ImageCollection('OREGONSTATE/PRISM/Norm81m') PRISM / OREGONSTATE 1981-01-01 2010-12-31 -125, 24, -66, 50 True 30_year, climate, geophysical, oregonstate, precipitation, pressure, prism, temperature, vapor, weather https://storage.googleapis.com/earthengine-stac/catalog/OREGONSTATE/OREGONSTATE_PRISM_Norm81m.json https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_Norm81m proprietary OREGONSTATE/PRISM/Norm91m PRISM Long-Term Average Climate Dataset Norm91m image_collection ee.ImageCollection('OREGONSTATE/PRISM/Norm91m') PRISM / OREGONSTATE 1991-01-01 2020-12-31 -125, 24, -66, 50 False 30_year, climate, geophysical, oregonstate, precipitation, pressure, prism, temperature, vapor, weather https://storage.googleapis.com/earthengine-stac/catalog/OREGONSTATE/OREGONSTATE_PRISM_Norm91m.json https://developers.google.com/earth-engine/datasets/catalog/OREGONSTATE_PRISM_Norm91m proprietary @@ -731,7 +731,7 @@ TIGER/2018/States TIGER: US Census States 2018 table ee.FeatureCollection('TIGER TIGER/2020/BG TIGER: US Census Block Groups (BG) 2020 table ee.FeatureCollection('TIGER/2020/BG') United States Census Bureau 2020-01-01 2020-01-02 -180, -14.69, -64.435, 71.567 False census, city, neighborhood, tiger, urban, us https://storage.googleapis.com/earthengine-stac/catalog/TIGER/TIGER_2020_BG.json https://developers.google.com/earth-engine/datasets/catalog/TIGER_2020_BG proprietary TIGER/2020/TABBLOCK20 TIGER: 2020 Tabulation (Census) Block table ee.FeatureCollection('TIGER/2020/TABBLOCK20') United States Census Bureau 2020-01-01 2020-01-02 -180, -14.69, -64.435, 71.567 False census, city, neighborhood, tiger, urban, us https://storage.googleapis.com/earthengine-stac/catalog/TIGER/TIGER_2020_TABBLOCK20.json https://developers.google.com/earth-engine/datasets/catalog/TIGER_2020_TABBLOCK20 proprietary TIGER/2020/TRACT TIGER: US Census Tracts table ee.FeatureCollection('TIGER/2020/TRACT') United States Census Bureau 2020-01-01 2020-01-02 -180, -14.69, -64.435, 71.567 False census, city, neighborhood, tiger, urban, us https://storage.googleapis.com/earthengine-stac/catalog/TIGER/TIGER_2020_TRACT.json https://developers.google.com/earth-engine/datasets/catalog/TIGER_2020_TRACT proprietary -TOMS/MERGED TOMS and OMI Merged Ozone Data image_collection ee.ImageCollection('TOMS/MERGED') NASA / GES DISC 1978-11-01 2024-12-07 -180, -90, 180, 90 False atmosphere, aura, climate, geophysical, ges_disc, goddard, nasa, omi, ozone, toms https://storage.googleapis.com/earthengine-stac/catalog/TOMS/TOMS_MERGED.json https://developers.google.com/earth-engine/datasets/catalog/TOMS_MERGED proprietary +TOMS/MERGED TOMS and OMI Merged Ozone Data image_collection ee.ImageCollection('TOMS/MERGED') NASA / GES DISC 1978-11-01 2024-12-08 -180, -90, 180, 90 False atmosphere, aura, climate, geophysical, ges_disc, goddard, nasa, omi, ozone, toms https://storage.googleapis.com/earthengine-stac/catalog/TOMS/TOMS_MERGED.json https://developers.google.com/earth-engine/datasets/catalog/TOMS_MERGED proprietary TRMM/3B42 TRMM 3B42: 3-Hourly Precipitation Estimates image_collection ee.ImageCollection('TRMM/3B42') NASA GES DISC at NASA Goddard Space Flight Center 1998-01-01 2019-12-31 -180, -50, 180, 50 False 3_hourly, climate, geophysical, jaxa, nasa, precipitation, rainfall, trmm, weather https://storage.googleapis.com/earthengine-stac/catalog/TRMM/TRMM_3B42.json https://developers.google.com/earth-engine/datasets/catalog/TRMM_3B42 proprietary TRMM/3B43V7 TRMM 3B43: Monthly Precipitation Estimates image_collection ee.ImageCollection('TRMM/3B43V7') NASA GES DISC at NASA Goddard Space Flight Center 1998-01-01 2019-12-01 -180, -50, 180, 50 False climate, geophysical, jaxa, nasa, precipitation, rainfall, trmm, weather https://storage.googleapis.com/earthengine-stac/catalog/TRMM/TRMM_3B43V7.json https://developers.google.com/earth-engine/datasets/catalog/TRMM_3B43V7 proprietary TUBerlin/BigEarthNet/v1 TUBerlin/BigEarthNet/v1 image_collection ee.ImageCollection('TUBerlin/BigEarthNet/v1') BigEarthNet 2017-06-01 2018-05-31 -9, 36.9, 31.6, 68.1 False chip, copernicus, corine_derived, label, ml, sentinel, tile https://storage.googleapis.com/earthengine-stac/catalog/TUBerlin/TUBerlin_BigEarthNet_v1.json https://developers.google.com/earth-engine/datasets/catalog/TUBerlin_BigEarthNet_v1 proprietary @@ -820,7 +820,7 @@ USGS/WBD/2017/HUC06 HUC06: USGS Watershed Boundary Dataset of Basins table ee.Fe USGS/WBD/2017/HUC08 HUC08: USGS Watershed Boundary Dataset of Subbasins table ee.FeatureCollection('USGS/WBD/2017/HUC08') United States Geological Survey 2017-04-22 2017-04-23 -180, -14.69, 180, 71.567 False hydrology, usgs, water, watershed, wbd https://storage.googleapis.com/earthengine-stac/catalog/USGS/USGS_WBD_2017_HUC08.json https://developers.google.com/earth-engine/datasets/catalog/USGS_WBD_2017_HUC08 proprietary USGS/WBD/2017/HUC10 HUC10: USGS Watershed Boundary Dataset of Watersheds table ee.FeatureCollection('USGS/WBD/2017/HUC10') United States Geological Survey 2017-04-22 2017-04-23 -180, -14.69, 180, 71.567 False hydrology, usgs, water, watershed, wbd https://storage.googleapis.com/earthengine-stac/catalog/USGS/USGS_WBD_2017_HUC10.json https://developers.google.com/earth-engine/datasets/catalog/USGS_WBD_2017_HUC10 proprietary USGS/WBD/2017/HUC12 HUC12: USGS Watershed Boundary Dataset of Subwatersheds table ee.FeatureCollection('USGS/WBD/2017/HUC12') United States Geological Survey 2017-04-22 2017-04-23 -180, -14.69, 180, 71.567 False hydrology, usgs, water, watershed, wbd https://storage.googleapis.com/earthengine-stac/catalog/USGS/USGS_WBD_2017_HUC12.json https://developers.google.com/earth-engine/datasets/catalog/USGS_WBD_2017_HUC12 proprietary -UTOKYO/WTLAB/KBDI/v1 KBDI: Keetch-Byram Drought Index image_collection ee.ImageCollection('UTOKYO/WTLAB/KBDI/v1') Institute of Industrial Science, The University of Tokyo, Japan 2007-01-01 2024-12-07 60, -60, 180, 60 False drought, kbdi, lst_derived, rainfall, utokyo, wtlab https://storage.googleapis.com/earthengine-stac/catalog/UTOKYO/UTOKYO_WTLAB_KBDI_v1.json https://developers.google.com/earth-engine/datasets/catalog/UTOKYO_WTLAB_KBDI_v1 CC-BY-4.0 +UTOKYO/WTLAB/KBDI/v1 KBDI: Keetch-Byram Drought Index image_collection ee.ImageCollection('UTOKYO/WTLAB/KBDI/v1') Institute of Industrial Science, The University of Tokyo, Japan 2007-01-01 2024-12-09 60, -60, 180, 60 False drought, kbdi, lst_derived, rainfall, utokyo, wtlab https://storage.googleapis.com/earthengine-stac/catalog/UTOKYO/UTOKYO_WTLAB_KBDI_v1.json https://developers.google.com/earth-engine/datasets/catalog/UTOKYO_WTLAB_KBDI_v1 CC-BY-4.0 VITO/PROBAV/C1/S1_TOC_100M PROBA-V C1 Top Of Canopy Daily Synthesis 100m image_collection ee.ImageCollection('VITO/PROBAV/C1/S1_TOC_100M') Vito / ESA 2013-10-17 2021-10-31 -180, -90, 180, 90 False esa, multispectral, nir, proba, probav, swir, vito https://storage.googleapis.com/earthengine-stac/catalog/VITO/VITO_PROBAV_C1_S1_TOC_100M.json https://developers.google.com/earth-engine/datasets/catalog/VITO_PROBAV_C1_S1_TOC_100M proprietary VITO/PROBAV/C1/S1_TOC_333M PROBA-V C1 Top Of Canopy Daily Synthesis 333m image_collection ee.ImageCollection('VITO/PROBAV/C1/S1_TOC_333M') Vito / ESA 2013-10-17 2021-10-31 -180, -90, 180, 90 False esa, multispectral, nir, proba, probav, swir, vito https://storage.googleapis.com/earthengine-stac/catalog/VITO/VITO_PROBAV_C1_S1_TOC_333M.json https://developers.google.com/earth-engine/datasets/catalog/VITO_PROBAV_C1_S1_TOC_333M proprietary VITO/PROBAV/S1_TOC_100M PROBA-V C0 Top Of Canopy Daily Synthesis 100m [deprecated] image_collection ee.ImageCollection('VITO/PROBAV/S1_TOC_100M') Vito / ESA 2013-10-17 2016-12-14 -180, -90, 180, 90 True esa, multispectral, nir, proba, probav, swir, vito https://storage.googleapis.com/earthengine-stac/catalog/VITO/VITO_PROBAV_S1_TOC_100M.json https://developers.google.com/earth-engine/datasets/catalog/VITO_PROBAV_S1_TOC_100M proprietary @@ -894,7 +894,7 @@ projects/forestdatapartnership/assets/community_forests/ForestPersistence_2020 F projects/forestdatapartnership/assets/community_palm/20240312 Palm Probability v20240312 [deprecated] image_collection ee.ImageCollection('projects/forestdatapartnership/assets/community_palm/20240312') Produced by Google for the Forest Data Partnership 2020-01-01 2023-12-31 92.99, -11.94, 132.71, 11.71 True deforestation, eudr, biodiversity, conservation, crop, landuse, palm, plantation https://storage.googleapis.com/earthengine-stac/catalog/forestdatapartnership/projects_forestdatapartnership_assets_community_palm_20240312.json https://developers.google.com/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_community_palm_20240312 CC-BY-4.0 projects/forestdatapartnership/assets/palm/model_2024a Palm Probability model 2024a image_collection ee.ImageCollection('projects/forestdatapartnership/assets/palm/model_2024a') Produced by Google for the Forest Data Partnership 2020-01-01 2023-12-31 -180, -90, 180, 90 False eudr, biodiversity, conservation, crop, landuse, palm, plantation https://storage.googleapis.com/earthengine-stac/catalog/forestdatapartnership/projects_forestdatapartnership_assets_palm_model_2024a.json https://developers.google.com/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_palm_model_2024a CC-BY-NC-4.0 projects/forestdatapartnership/assets/rubber/model_2024a Rubber Tree Probability model 2024a image_collection ee.ImageCollection('projects/forestdatapartnership/assets/rubber/model_2024a') Produced by Google for the Forest Data Partnership 2020-01-01 2023-12-31 -180, -90, 180, 90 False eudr, biodiversity, conservation, crop, landuse, rubber, plantation, pre_review https://storage.googleapis.com/earthengine-stac/catalog/forestdatapartnership/projects_forestdatapartnership_assets_rubber_model_2024a.json https://developers.google.com/earth-engine/datasets/catalog/projects_forestdatapartnership_assets_rubber_model_2024a CC-BY-NC-4.0 -projects/gcp-public-data-weathernext/assets/59572747_4_0 WeatherNext Graph Forecasts image_collection ee.ImageCollection('projects/gcp-public-data-weathernext/assets/59572747_4_0') Google 2020-01-01 2024-12-09 -180, -90, 180, 90 False weather, weathernext, forecast, temperature, precipitation, wind https://storage.googleapis.com/earthengine-stac/catalog/gcp-public-data-weathernext/projects_gcp-public-data-weathernext_assets_59572747_4_0.json https://developers.google.com/earth-engine/datasets/catalog/projects_gcp-public-data-weathernext_assets_59572747_4_0 proprietary +projects/gcp-public-data-weathernext/assets/59572747_4_0 WeatherNext Graph Forecasts image_collection ee.ImageCollection('projects/gcp-public-data-weathernext/assets/59572747_4_0') Google 2020-01-01 2024-12-10 -180, -90, 180, 90 False weather, weathernext, forecast, temperature, precipitation, wind https://storage.googleapis.com/earthengine-stac/catalog/gcp-public-data-weathernext/projects_gcp-public-data-weathernext_assets_59572747_4_0.json https://developers.google.com/earth-engine/datasets/catalog/projects_gcp-public-data-weathernext_assets_59572747_4_0 proprietary projects/geoscience-aus-cat/assets/NIDEM National Intertidal Digital Elevation Model 25m 1.0.0 image ee.Image('projects/geoscience-aus-cat/assets/NIDEM') Geoscience Australia 1986-08-16 2017-07-31 108.81, -44.41, 157.82, -9.13 False australia, ga, dem, landsat_derived https://storage.googleapis.com/earthengine-stac/catalog/geoscience-aus-cat/projects_geoscience-aus-cat_assets_NIDEM.json https://developers.google.com/earth-engine/datasets/catalog/projects_geoscience-aus-cat_assets_NIDEM CC-BY-4.0 projects/geoscience-aus-cat/assets/ga_ls5t_nbart_gm_cyear_3 DEA Geometric Median and Median Absolute Deviation - Landsat 5 3.1.0 image_collection ee.ImageCollection('projects/geoscience-aus-cat/assets/ga_ls5t_nbart_gm_cyear_3') Geoscience Australia 1998-01-01 2012-01-01 108.81, -44.41, 157.82, -9.13 False australia, ga, landsat_derived https://storage.googleapis.com/earthengine-stac/catalog/geoscience-aus-cat/projects_geoscience-aus-cat_assets_ga_ls5t_nbart_gm_cyear_3.json https://developers.google.com/earth-engine/datasets/catalog/projects_geoscience-aus-cat_assets_ga_ls5t_nbart_gm_cyear_3 CC-BY-4.0 projects/geoscience-aus-cat/assets/ga_ls7e_nbart_gm_cyear_3 DEA Geometric Median and Median Absolute Deviation - Landsat 7 3.1.0 image_collection ee.ImageCollection('projects/geoscience-aus-cat/assets/ga_ls7e_nbart_gm_cyear_3') Geoscience Australia 2000-01-01 2021-01-01 108.81, -44.41, 157.82, -9.13 False australia, ga, landsat_derived https://storage.googleapis.com/earthengine-stac/catalog/geoscience-aus-cat/projects_geoscience-aus-cat_assets_ga_ls7e_nbart_gm_cyear_3.json https://developers.google.com/earth-engine/datasets/catalog/projects_geoscience-aus-cat_assets_ga_ls7e_nbart_gm_cyear_3 CC-BY-4.0 @@ -903,7 +903,7 @@ projects/geoscience-aus-cat/assets/ga_ls8cls9c_gm_cyear_3 DEA Geometric Median a projects/geoscience-aus-cat/assets/ga_ls_landcover_class_cyear_2 DEA Land Cover 1.0.0 image_collection ee.ImageCollection('projects/geoscience-aus-cat/assets/ga_ls_landcover_class_cyear_2') Geoscience Australia 1988-01-01 2020-01-01 108.81, -44.41, 157.82, -9.13 False australia, ga, landsat_derived, landcover https://storage.googleapis.com/earthengine-stac/catalog/geoscience-aus-cat/projects_geoscience-aus-cat_assets_ga_ls_landcover_class_cyear_2.json https://developers.google.com/earth-engine/datasets/catalog/projects_geoscience-aus-cat_assets_ga_ls_landcover_class_cyear_2 CC-BY-4.0 projects/geoscience-aus-cat/assets/ga_ls_wo_fq_cyear_3 DEA Water Observations Statistics 3.1.6 image_collection ee.ImageCollection('projects/geoscience-aus-cat/assets/ga_ls_wo_fq_cyear_3') Geoscience Australia 1987-01-01 2022-01-01 108.81, -44.41, 157.82, -9.13 False australia, ga, landsat_derived, water https://storage.googleapis.com/earthengine-stac/catalog/geoscience-aus-cat/projects_geoscience-aus-cat_assets_ga_ls_wo_fq_cyear_3.json https://developers.google.com/earth-engine/datasets/catalog/projects_geoscience-aus-cat_assets_ga_ls_wo_fq_cyear_3 CC-BY-4.0 projects/global-pasture-watch/assets/ggc-30m/v1/cultiv-grassland_p GPW Annual Probabilities of Cultivated Grasslands v1 image_collection ee.ImageCollection('projects/global-pasture-watch/assets/ggc-30m/v1/cultiv-grassland_p') Land and Carbon Lab Global Pasture Watch 2000-01-01 2023-01-01 -180, -90, 180, 90 False land, landcover, landuse, global, vegetation https://storage.googleapis.com/earthengine-stac/catalog/global-pasture-watch/projects_global-pasture-watch_assets_ggc-30m_v1_cultiv-grassland_p.json https://developers.google.com/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_cultiv-grassland_p CC-BY-4.0 -projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c GPW Annual Dominant Class of Crasslands v1 image_collection ee.ImageCollection('projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c') Land and Carbon Lab Global Pasture Watch 2000-01-01 2023-01-01 -180, -90, 180, 90 False land, landcover, landuse, global, vegetation https://storage.googleapis.com/earthengine-stac/catalog/global-pasture-watch/projects_global-pasture-watch_assets_ggc-30m_v1_grassland_c.json https://developers.google.com/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_grassland_c CC-BY-4.0 +projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c GPW Annual Dominant Class of Grasslands v1 image_collection ee.ImageCollection('projects/global-pasture-watch/assets/ggc-30m/v1/grassland_c') Land and Carbon Lab Global Pasture Watch 2000-01-01 2023-01-01 -180, -90, 180, 90 False land, landcover, landuse, global, vegetation https://storage.googleapis.com/earthengine-stac/catalog/global-pasture-watch/projects_global-pasture-watch_assets_ggc-30m_v1_grassland_c.json https://developers.google.com/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_grassland_c CC-BY-4.0 projects/global-pasture-watch/assets/ggc-30m/v1/nat-semi-grassland_p GPW Annual Probabilities of Natural/Semi-natural Grasslands v1 image_collection ee.ImageCollection('projects/global-pasture-watch/assets/ggc-30m/v1/nat-semi-grassland_p') Land and Carbon Lab Global Pasture Watch 2000-01-01 2023-01-01 -180, -90, 180, 90 False land, landcover, landuse, global, vegetation https://storage.googleapis.com/earthengine-stac/catalog/global-pasture-watch/projects_global-pasture-watch_assets_ggc-30m_v1_nat-semi-grassland_p.json https://developers.google.com/earth-engine/datasets/catalog/projects_global-pasture-watch_assets_ggc-30m_v1_nat-semi-grassland_p CC-BY-4.0 projects/neon-prod-earthengine/assets/CHM/001 NEON Canopy Height Model (CHM) image_collection ee.ImageCollection('projects/neon-prod-earthengine/assets/CHM/001') NEON 2013-01-01 2023-07-03 -170, 16, -66, 73 False airborne, canopy, forest, lidar, neon, vegetation https://storage.googleapis.com/earthengine-stac/catalog/neon-prod-earthengine/projects_neon-prod-earthengine_assets_CHM_001.json https://developers.google.com/earth-engine/datasets/catalog/projects_neon-prod-earthengine_assets_CHM_001 CC0-1.0 projects/neon-prod-earthengine/assets/DEM/001 NEON Digital Elevation Model (DEM) image_collection ee.ImageCollection('projects/neon-prod-earthengine/assets/DEM/001') NEON 2013-01-01 2023-07-06 -170, 16, -66, 73 False airborne, dem, forest, lidar, neon, vegetation https://storage.googleapis.com/earthengine-stac/catalog/neon-prod-earthengine/projects_neon-prod-earthengine_assets_DEM_001.json https://developers.google.com/earth-engine/datasets/catalog/projects_neon-prod-earthengine_assets_DEM_001 CC0-1.0 diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index cf88766..f833584 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -19163,27 +19163,27 @@ }, { "id": "AERIALDIGI", - "title": "Aircraft Scanners - AERIALDIGI", - "catalog": "CEOS_EXTRA STAC Catalog", + "title": "Aircraft Scanners", + "catalog": "USGS_LTA STAC Catalog", "state_date": "1987-10-06", "end_date": "", "bbox": "-180, 24, -60, 72", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548706-CEOS_EXTRA.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548706-CEOS_EXTRA.html", - "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/AERIALDIGI", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1220566211-USGS_LTA.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1220566211-USGS_LTA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/USGS_LTA/collections/AERIALDIGI", "description": "The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees.", "license": "proprietary" }, { "id": "AERIALDIGI", - "title": "Aircraft Scanners", - "catalog": "USGS_LTA STAC Catalog", + "title": "Aircraft Scanners - AERIALDIGI", + "catalog": "CEOS_EXTRA STAC Catalog", "state_date": "1987-10-06", "end_date": "", "bbox": "-180, 24, -60, 72", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1220566211-USGS_LTA.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1220566211-USGS_LTA.html", - "href": "https://cmr.earthdata.nasa.gov/stac/USGS_LTA/collections/AERIALDIGI", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548706-CEOS_EXTRA.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548706-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/AERIALDIGI", "description": "The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees.", "license": "proprietary" }, @@ -31488,26 +31488,26 @@ { "id": "ATL02_006", "title": "ATLAS/ICESat-2 L1B Converted Telemetry Data V006", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2541211133-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2541211133-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL02_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2547589158-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2547589158-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL02_006", "description": "This data set (ATL02) contains science-unit-converted time-ordered telemetry data, calibrated for instrument effects, downlinked from the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The data are used by the ATLAS/ICESat-2 Science Investigator-led Processing System (SIPS) for system-level, quality control analysis and as source data for ATLAS/ICESat-2 Level-2 products and Precision Orbit Determination (POD) and Precision Pointing Determination (PPD) computations.", "license": "proprietary" }, { "id": "ATL02_006", "title": "ATLAS/ICESat-2 L1B Converted Telemetry Data V006", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2547589158-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2547589158-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL02_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2541211133-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2541211133-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL02_006", "description": "This data set (ATL02) contains science-unit-converted time-ordered telemetry data, calibrated for instrument effects, downlinked from the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The data are used by the ATLAS/ICESat-2 Science Investigator-led Processing System (SIPS) for system-level, quality control analysis and as source data for ATLAS/ICESat-2 Level-2 products and Precision Orbit Determination (POD) and Precision Pointing Determination (PPD) computations.", "license": "proprietary" }, @@ -31618,26 +31618,26 @@ { "id": "ATL07_006", "title": "ATLAS/ICESat-2 L3A Sea Ice Height V006", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2018-10-14", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2713030505-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2713030505-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL07_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2564625052-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2564625052-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL07_006", "description": "The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Height statistics and apparent reflectance are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory.", "license": "proprietary" }, { "id": "ATL07_006", "title": "ATLAS/ICESat-2 L3A Sea Ice Height V006", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2018-10-14", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2564625052-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2564625052-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL07_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2713030505-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2713030505-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL07_006", "description": "The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Height statistics and apparent reflectance are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory.", "license": "proprietary" }, @@ -31761,26 +31761,26 @@ { "id": "ATL11_006", "title": "ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series V006", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2019-03-29", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2750966856-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2750966856-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL11_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2752556504-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2752556504-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL11_006", "description": "This data set provides time series of land-ice surface heights derived from the ICESat-2 ATL06 Land Ice Height product. It is intended primarily as an input for higher level gridded products but can also be used on its own as a spatially organized product that allows easy access to height-change information derived from ICESat-2 observations.", "license": "proprietary" }, { "id": "ATL11_006", "title": "ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series V006", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2019-03-29", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2752556504-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2752556504-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL11_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2750966856-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2750966856-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL11_006", "description": "This data set provides time series of land-ice surface heights derived from the ICESat-2 ATL06 Land Ice Height product. It is intended primarily as an input for higher level gridded products but can also be used on its own as a spatially organized product that allows easy access to height-change information derived from ICESat-2 observations.", "license": "proprietary" }, @@ -31826,78 +31826,78 @@ { "id": "ATL13_006", "title": "ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2650116584-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2650116584-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL13_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL13_006", "description": "This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit).", "license": "proprietary" }, { "id": "ATL13_006", "title": "ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL13_006", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2650116584-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2650116584-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL13_006", "description": "This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit).", "license": "proprietary" }, { "id": "ATL14_003", "title": "ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V003", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2019-03-29", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776464127-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776464127-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL14_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776895337-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776895337-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL14_003", "description": "ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change.", "license": "proprietary" }, { "id": "ATL14_003", "title": "ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V003", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2019-03-29", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776895337-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776895337-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL14_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776464127-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776464127-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL14_003", "description": "ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change.", "license": "proprietary" }, { "id": "ATL14_004", "title": "ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V004", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2019-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684163-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684163-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL14_004", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3162179692-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3162179692-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL14_004", "description": "This data set contains a high-resolution (100 m) gridded digital elevation model (DEM) for the Antarctic ice sheet and regions around the Arctic. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11).", "license": "proprietary" }, { "id": "ATL14_004", "title": "ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V004", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2019-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3162179692-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3162179692-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL14_004", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684163-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684163-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL14_004", "description": "This data set contains a high-resolution (100 m) gridded digital elevation model (DEM) for the Antarctic ice sheet and regions around the Arctic. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11).", "license": "proprietary" }, @@ -31930,26 +31930,26 @@ { "id": "ATL15_004", "title": "ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V004", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2019-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684532-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684532-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL15_004", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3162334027-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3162334027-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL15_004", "description": "This data set contains land ice height changes and change rates for the Antarctic ice sheet and regions around the Arctic gridded at four spatial resolutions (1 km, 10 km, 20 km, and 40 km). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11).", "license": "proprietary" }, { "id": "ATL15_004", "title": "ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V004", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2019-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3162334027-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3162334027-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL15_004", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684532-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3159684532-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL15_004", "description": "This data set contains land ice height changes and change rates for the Antarctic ice sheet and regions around the Arctic gridded at four spatial resolutions (1 km, 10 km, 20 km, and 40 km). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11).", "license": "proprietary" }, @@ -31982,52 +31982,52 @@ { "id": "ATL17_005", "title": "ATLAS/ICESat-2 L3B Monthly Gridded Atmosphere V005", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2769338020-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2769338020-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL17_005", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2737997483-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2737997483-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL17_005", "description": "This data set contains a gridded summary of monthly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency.", "license": "proprietary" }, { "id": "ATL17_005", "title": "ATLAS/ICESat-2 L3B Monthly Gridded Atmosphere V005", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2737997483-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2737997483-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL17_005", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2769338020-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2769338020-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL17_005", "description": "This data set contains a gridded summary of monthly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency.", "license": "proprietary" }, { "id": "ATL19_003", "title": "ATLAS/ICESat-2 L3B Monthly Gridded Dynamic Ocean Topography V003", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -88, 180, 88", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2754956786-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2754956786-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL19_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2746899536-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2746899536-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL19_003", "description": "This data set contains monthly gridded dynamic ocean topography (DOT), derived from along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided in this data set. Both single beam and all-beam gridded averages are available in this data set. Single beam averages are useful to identify biases among the beams and the all-beam averages are advised to use for physical oceanography.", "license": "proprietary" }, { "id": "ATL19_003", "title": "ATLAS/ICESat-2 L3B Monthly Gridded Dynamic Ocean Topography V003", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -88, 180, 88", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2746899536-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2746899536-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL19_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2754956786-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2754956786-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL19_003", "description": "This data set contains monthly gridded dynamic ocean topography (DOT), derived from along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided in this data set. Both single beam and all-beam gridded averages are available in this data set. Single beam averages are useful to identify biases among the beams and the all-beam averages are advised to use for physical oceanography.", "license": "proprietary" }, @@ -32112,26 +32112,26 @@ { "id": "ATL23_001", "title": "ATLAS/ICESat-2 L3B Monthly 3-Month Gridded Dynamic Ocean Topography V001", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -88, 180, 88", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2765424272-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2765424272-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL23_001", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2692731693-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2692731693-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL23_001", "description": "This data set contains 3-month gridded averages of dynamic ocean topography (DOT) over midlatitude, north-polar, and south-polar grids derived from the along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided. Both single beam and all-beam gridded averages are available. Simple averages, degree-of-freedom averages, and averages interpolated to the center of grid cells are included, as well as uncertainty estimates.", "license": "proprietary" }, { "id": "ATL23_001", "title": "ATLAS/ICESat-2 L3B Monthly 3-Month Gridded Dynamic Ocean Topography V001", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2018-10-13", "end_date": "", "bbox": "-180, -88, 180, 88", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2692731693-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2692731693-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/ATL23_001", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2765424272-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2765424272-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/ATL23_001", "description": "This data set contains 3-month gridded averages of dynamic ocean topography (DOT) over midlatitude, north-polar, and south-polar grids derived from the along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided. Both single beam and all-beam gridded averages are available. Simple averages, degree-of-freedom averages, and averages interpolated to the center of grid cells are included, as well as uncertainty estimates.", "license": "proprietary" }, @@ -80186,52 +80186,52 @@ { "id": "GLAH01_033", "title": "GLAS/ICESat L1A Global Altimetry Data (HDF5) V033", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547306-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547306-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH01_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000400-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000400-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH01_033", "description": "Level-1A altimetry data (GLAH01) include the transmitted and received waveform from the altimeter. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH01_033", "title": "GLAS/ICESat L1A Global Altimetry Data (HDF5) V033", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000400-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000400-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH01_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547306-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547306-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH01_033", "description": "Level-1A altimetry data (GLAH01) include the transmitted and received waveform from the altimeter. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH02_033", "title": "GLAS/ICESat L1A Global Atmosphere Data (HDF5) V033", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547430-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547430-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH02_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991862-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991862-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH02_033", "description": "GLAH02 Level-1A atmospheric data include the normalized relative backscatter for the 532 nm and 1064 nm channels, and low-level instrument corrections such as laser energy (1064 nm and 532 nm), photon coincidence (532 nm), and detector gain correction (1064 nm). Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH02_033", "title": "GLAS/ICESat L1A Global Atmosphere Data (HDF5) V033", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991862-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991862-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH02_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547430-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153547430-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH02_033", "description": "GLAH02 Level-1A atmospheric data include the normalized relative backscatter for the 532 nm and 1064 nm channels, and low-level instrument corrections such as laser energy (1064 nm and 532 nm), photon coincidence (532 nm), and detector gain correction (1064 nm). Each data granule has an associated browse product.", "license": "proprietary" }, @@ -80342,104 +80342,104 @@ { "id": "GLAH07_033", "title": "GLAS/ICESat L1B Global Backscatter Data (HDF5) V033", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991867-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991867-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH07_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549420-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549420-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH07_033", "description": "GLAH07 Level-1B global backscatter data are provided at full instrument resolution. The product includes full 532 nm (41.1 to -1.0 km) and 1064 nm (20 to -1 km) calibrated attenuated backscatter profiles at 5 times per second, and from 10 to -1 km, at 40 times per second for both channels. Also included are calibration coefficient values and molecular backscatter profiles at once per second. Data granules contain approximately 190 minutes (2 orbits) of data. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH07_033", "title": "GLAS/ICESat L1B Global Backscatter Data (HDF5) V033", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549420-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549420-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH07_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991867-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991867-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH07_033", "description": "GLAH07 Level-1B global backscatter data are provided at full instrument resolution. The product includes full 532 nm (41.1 to -1.0 km) and 1064 nm (20 to -1 km) calibrated attenuated backscatter profiles at 5 times per second, and from 10 to -1 km, at 40 times per second for both channels. Also included are calibration coefficient values and molecular backscatter profiles at once per second. Data granules contain approximately 190 minutes (2 orbits) of data. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH08_033", "title": "GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights (HDF5) V033", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1631093696-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1631093696-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH08_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549511-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549511-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH08_033", "description": "GLAH08 Level-2 planetary boundary layer (PBL) and elevated aerosol layer heights data contains PBL heights, ground detection heights, and top and bottom heights of elevated aerosols from -1.5 km to 20.5 km (4 sec sampling rate) and from 20.5 km to 41 km (20 sec sampling rate). Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH08_033", "title": "GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights (HDF5) V033", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549511-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549511-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH08_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1631093696-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1631093696-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH08_033", "description": "GLAH08 Level-2 planetary boundary layer (PBL) and elevated aerosol layer heights data contains PBL heights, ground detection heights, and top and bottom heights of elevated aerosols from -1.5 km to 20.5 km (4 sec sampling rate) and from 20.5 km to 41 km (20 sec sampling rate). Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH09_033", "title": "GLAS/ICESat L2 Global Cloud Heights for Multi-layer Clouds (HDF5) V033", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549579-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549579-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH09_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991869-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991869-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH09_033", "description": "GLAH09 Level-2 cloud heights for multi-layer clouds contain cloud layer top and bottom height data at sampling rates of 4 sec, 1 sec, 5 Hz, and 40 Hz. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH09_033", "title": "GLAS/ICESat L2 Global Cloud Heights for Multi-layer Clouds (HDF5) V033", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991869-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991869-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH09_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549579-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549579-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH09_033", "description": "GLAH09 Level-2 cloud heights for multi-layer clouds contain cloud layer top and bottom height data at sampling rates of 4 sec, 1 sec, 5 Hz, and 40 Hz. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH10_033", "title": "GLAS/ICESat L2 Global Aerosol Vertical Structure Data (HDF5) V033", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-09-25", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549654-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549654-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH10_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991870-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991870-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH10_033", "description": "GLAH10 Level-2 aerosol vertical structure data contain the attenuation-corrected cloud and aerosol backscatter and extinction profiles at a 4 sec sampling rate for aerosols and a 1 sec rate for clouds. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH10_033", "title": "GLAS/ICESat L2 Global Aerosol Vertical Structure Data (HDF5) V033", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-09-25", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C189991870-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C189991870-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH10_033", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549654-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549654-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH10_033", "description": "GLAH10 Level-2 aerosol vertical structure data contain the attenuation-corrected cloud and aerosol backscatter and extinction profiles at a 4 sec sampling rate for aerosols and a 1 sec rate for clouds. Each data granule has an associated browse product.", "license": "proprietary" }, @@ -80472,52 +80472,52 @@ { "id": "GLAH12_034", "title": "GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5) V034", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549818-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549818-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH12_034", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000461-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000461-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH12_034", "description": "GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (\u00b1 50\u00b0 latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH12_034", "title": "GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5) V034", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000461-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000461-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH12_034", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549818-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549818-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH12_034", "description": "GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (\u00b1 50\u00b0 latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH13_034", "title": "GLAS/ICESat L2 Sea Ice Altimetry Data (HDF5) V034", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549910-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549910-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH13_034", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000464-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000464-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH13_034", "description": "GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (\u00b1 50\u00b0 latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH13_034", "title": "GLAS/ICESat L2 Sea Ice Altimetry Data (HDF5) V034", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000464-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000464-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH13_034", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549910-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153549910-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH13_034", "description": "GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (\u00b1 50\u00b0 latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product.", "license": "proprietary" }, @@ -80550,26 +80550,26 @@ { "id": "GLAH15_034", "title": "GLAS/ICESat L2 Ocean Altimetry Data (HDF5) V034", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153552369-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153552369-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH15_034", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000420-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000420-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH15_034", "description": "GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (\u00b1 50\u00b0 latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product.", "license": "proprietary" }, { "id": "GLAH15_034", "title": "GLAS/ICESat L2 Ocean Altimetry Data (HDF5) V034", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2003-02-20", "end_date": "2009-10-11", "bbox": "-180, -86, 180, 86", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000420-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000420-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/GLAH15_034", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2153552369-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2153552369-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/GLAH15_034", "description": "GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (\u00b1 50\u00b0 latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product.", "license": "proprietary" }, @@ -84230,7 +84230,7 @@ "id": "GPM_3IMERGDE_07", "title": "GPM IMERG Early Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDE) at GES DISC", "catalog": "GES_DISC STAC Catalog", - "state_date": "2000-06-01", + "state_date": "1998-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2723754850-GES_DISC.umm_json", @@ -84269,7 +84269,7 @@ "id": "GPM_3IMERGDL_07", "title": "GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDL) at GES DISC", "catalog": "GES_DISC STAC Catalog", - "state_date": "2000-06-01", + "state_date": "1998-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2723754859-GES_DISC.umm_json", @@ -84295,7 +84295,7 @@ "id": "GPM_3IMERGHHE_07", "title": "GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHE) at GES DISC", "catalog": "GES_DISC STAC Catalog", - "state_date": "2000-06-01", + "state_date": "1998-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2723758340-GES_DISC.umm_json", @@ -84321,7 +84321,7 @@ "id": "GPM_3IMERGHHL_07", "title": "GPM IMERG Late Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHL) at GES DISC", "catalog": "GES_DISC STAC Catalog", - "state_date": "2000-06-01", + "state_date": "1998-01-01", "end_date": "", "bbox": "-180, -90, 180, 90", "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2723754845-GES_DISC.umm_json", @@ -152450,19 +152450,6 @@ "description": "This Level-2G daily global gridded product OMTO3G is based on the pixel level OMI Level-2 Total Ozone Product OMTO3. The OMTO3 product is from the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. The OMTO3G data product is a special Level-2 Global Gridded Product where pixel level data are binned into 0.25x0.25 degree global grids. It contains the data for all L2 scenes that have observation time between UTC times of 00:00:00 and 23:59:59.9999. All data pixels that fall in a grid box are saved Without Averaging. Scientists can apply a data filtering scheme of their choice and create new gridded products. The OMTO3G data product contains almost all parameters that are contained in the OMTO3. For example, in addition to the total column ozone it also contains UV aerosol index, cloud fraction, cloud pressure, terrain height, geolocation, solar and satellite viewing angles, and quality flags. The OMTO3G files are stored in the version 5 EOS Hierarchical Data Format (HDF-EOS5). Each file contains daily data from approximately 15 orbits. The maximum file size for the OMTO3G data product is about 150 Mbytes.", "license": "proprietary" }, - { - "id": "OMTO3_003", - "title": "OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT", - "catalog": "OMINRT STAC Catalog", - "state_date": "2004-07-15", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.html", - "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMTO3_003", - "description": "The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring Instrument (OMI)was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator's (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. This level-2 global total column ozone product (OMTO3)is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI additional hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrieval (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and extensive quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3 and the algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia ( Pawan.K.Bhartia@nasa.gov). OMTO3 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is about 35 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMTO3 data file contains one swath which consists of two groups: Data fields: OMI Total Ozone,Effective Reflectivity (331 - 360 nm), N-value, Cloud Fraction, Cloud Top Pressure, O3 below Cloud, UV Aerosol Index, SO2 index, Wavelength used in the algorithm, many Auxiliary Algorithm Parameter and Quality Flags Geolocation Fields: Latitude, Longitude, Time, Relative Azimuth, Solar Zenith and Azimuth, Viewing Zenith and Azimuth angles, Spacecraft Altitude, Latitude, Longitude, Terrain Height, Ground Pixel Quality Flags.For the full set of Aura data products available from the GES DISC, please see the link http://disc.sci.gsfc.nasa.gov/Aura/ .", - "license": "proprietary" - }, { "id": "OMTO3_003", "title": "OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC", @@ -152476,6 +152463,19 @@ "description": "The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) for the public access. OMI provides two Level-2 (OMTO3 and OMDOAO3) total column ozone products at pixel resolution (13 x 24 km at nadir) that are based on two different algorithms. This level-2 global total column ozone product (OMTO3) is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrievals (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3. The algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia. The OMTO3 files are stored in the version 5 EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is approximately 35 MB.", "license": "proprietary" }, + { + "id": "OMTO3_003", + "title": "OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT", + "catalog": "OMINRT STAC Catalog", + "state_date": "2004-07-15", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.html", + "href": "https://cmr.earthdata.nasa.gov/stac/OMINRT/collections/OMTO3_003", + "description": "The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring Instrument (OMI)was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator's (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. This level-2 global total column ozone product (OMTO3)is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI additional hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrieval (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and extensive quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3 and the algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia ( Pawan.K.Bhartia@nasa.gov). OMTO3 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is about 35 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMTO3 data file contains one swath which consists of two groups: Data fields: OMI Total Ozone,Effective Reflectivity (331 - 360 nm), N-value, Cloud Fraction, Cloud Top Pressure, O3 below Cloud, UV Aerosol Index, SO2 index, Wavelength used in the algorithm, many Auxiliary Algorithm Parameter and Quality Flags Geolocation Fields: Latitude, Longitude, Time, Relative Azimuth, Solar Zenith and Azimuth, Viewing Zenith and Azimuth angles, Spacecraft Altitude, Latitude, Longitude, Terrain Height, Ground Pixel Quality Flags.For the full set of Aura data products available from the GES DISC, please see the link http://disc.sci.gsfc.nasa.gov/Aura/ .", + "license": "proprietary" + }, { "id": "OMTO3_CPR_003", "title": "OMI/Aura Level 2 Ozone (O3) Total Column 1-Orbit Subset and Collocated Swath along CloudSat track 200-km wide at 13x24 km2 resolution", @@ -165801,6 +165801,19 @@ "description": "This data set contains unprocessed point cloud data created from terrestrial lidar scans (TLS) collected during the SnowEx 2023 campaign from the Bonanza Creek Experimental Forest near Fairbanks, Alaska. Data were collected in October 2022 (snow-off) and March 2023 (snow-on). Digital terrain models (DTMs) derived from the raw point cloud data are available as the SnowEx23 Bonanza Creek Experimental Forest Terrestrial Lidar Scans, Version 1 (SNEX23_BCEF_TLS) data set", "license": "proprietary" }, + { + "id": "SNEX23_CBand_1", + "title": "SnowEx23 Mar23 Mobile Tower-Based Dual-Pol C-Band V001", + "catalog": "NSIDC_ECS STAC Catalog", + "state_date": "2023-03-08", + "end_date": "2023-03-15", + "bbox": "-147.75, 64.85, -147.48, 65.16", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3313966954-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3313966954-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SNEX23_CBand_1", + "description": "This data set contains C-band radar data collected during the NASA SnowEx 2023 Alaska field campaign between 08 March 2023 to 15 March 2023. Data was acquired from two study areas near Fairbanks, Alaska using a multi-polarization radar affixed to sled-mounted tower. The study sites (Caribou Poker Creek watershed and Farmer\u2019s Loop/Creamer\u2019s Field) are boreal forest and wetland environments. Data was also collected from a school adjacent to Farmer\u2019s Loop, to record data from man-made surfaces (i.e., concrete and cultivated grass.)", + "license": "proprietary" + }, { "id": "SNEX23_CRREL_GPR_1", "title": "SnowEx23 CRREL Ground Penetrating Radar V001", @@ -168495,52 +168508,52 @@ { "id": "SPL2SMAP_S_003", "title": "SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -60, 180, 60", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663471-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663471-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL2SMAP_S_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1931663473-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1931663473-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL2SMAP_S_003", "description": "This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes and the Sentinel-1A and -1B radar. SMAP L-band brightness temperatures and Copernicus Sentinel-1 C-band backscatter coefficients are used to derive soil moisture data, which are then resampled to an Earth-fixed, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). While the 3 km data product has undergone validation, the 1 km product has not and should be used with caution.", "license": "proprietary" }, { "id": "SPL2SMAP_S_003", "title": "SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -60, 180, 60", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1931663473-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1931663473-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL2SMAP_S_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663471-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663471-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL2SMAP_S_003", "description": "This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes and the Sentinel-1A and -1B radar. SMAP L-band brightness temperatures and Copernicus Sentinel-1 C-band backscatter coefficients are used to derive soil moisture data, which are then resampled to an Earth-fixed, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). While the 3 km data product has undergone validation, the 1 km product has not and should be used with caution.", "license": "proprietary" }, { "id": "SPL2SMA_003", "title": "SMAP L2 Radar Half-Orbit 3 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-04-13", "end_date": "2015-07-07", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2812935277-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2812935277-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL2SMA_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303826-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303826-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL2SMA_003", "description": "This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) active radar during 6:00 a.m. descending half-orbit passes, as well as ancillary data such as surface temperature and vegetation water content. Input backscatter data used to derive soil moisture are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).", "license": "proprietary" }, { "id": "SPL2SMA_003", "title": "SMAP L2 Radar Half-Orbit 3 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-04-13", "end_date": "2015-07-07", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303826-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303826-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL2SMA_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2812935277-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2812935277-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL2SMA_003", "description": "This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) active radar during 6:00 a.m. descending half-orbit passes, as well as ancillary data such as surface temperature and vegetation water content. Input backscatter data used to derive soil moisture are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).", "license": "proprietary" }, @@ -168560,26 +168573,26 @@ { "id": "SPL2SMP_009", "title": "SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V009", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463734-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463734-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL2SMP_009", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663609-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663609-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL2SMP_009", "description": "This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are resampled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [and made available as the SPL1CTB product], and the gridded brightness temperatures are then used to derive gridded soil moisture data.", "license": "proprietary" }, { "id": "SPL2SMP_009", "title": "SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V009", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663609-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938663609-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL2SMP_009", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463734-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463734-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL2SMP_009", "description": "This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are resampled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [and made available as the SPL1CTB product], and the gridded brightness temperatures are then used to derive gridded soil moisture data.", "license": "proprietary" }, @@ -168677,26 +168690,26 @@ { "id": "SPL3FTP_004", "title": "SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw State V004", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463838-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463838-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL3FTP_004", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938664170-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938664170-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL3FTP_004", "description": "This Level-3 (L3) product provides a daily composite of landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are used to derive freeze/thaw state and transition data, which are then resampled to both an Earth-fixed, Northern Hemisphere azimuthal 36 km Equal-Area Scalable Earth Grid (EASE-Grid 2.0), and to an Earth-fixed global 36 km EASE-Grid 2.0.", "license": "proprietary" }, { "id": "SPL3FTP_004", "title": "SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw State V004", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938664170-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938664170-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL3FTP_004", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463838-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2776463838-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL3FTP_004", "description": "This Level-3 (L3) product provides a daily composite of landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are used to derive freeze/thaw state and transition data, which are then resampled to both an Earth-fixed, Northern Hemisphere azimuthal 36 km Equal-Area Scalable Earth Grid (EASE-Grid 2.0), and to an Earth-fixed global 36 km EASE-Grid 2.0.", "license": "proprietary" }, @@ -168742,52 +168755,52 @@ { "id": "SPL3SMAP_003", "title": "SMAP L3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-04-13", "end_date": "2015-07-07", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2872767144-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2872767144-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL3SMAP_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303847-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303847-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL3SMAP_003", "description": "This Level-3 (L3) soil moisture product provides a daily composite of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).", "license": "proprietary" }, { "id": "SPL3SMAP_003", "title": "SMAP L3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-04-13", "end_date": "2015-07-07", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303847-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303847-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL3SMAP_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2872767144-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2872767144-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL3SMAP_003", "description": "This Level-3 (L3) soil moisture product provides a daily composite of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).", "license": "proprietary" }, { "id": "SPL3SMA_003", "title": "SMAP L3 Radar Global Daily 3 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-04-13", "end_date": "2015-07-07", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303828-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303828-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL3SMA_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2872766452-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2872766452-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL3SMA_003", "description": "This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radar as well as a variety of ancillary data sources. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).", "license": "proprietary" }, { "id": "SPL3SMA_003", "title": "SMAP L3 Radar Global Daily 3 km EASE-Grid Soil Moisture V003", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-04-13", "end_date": "2015-07-07", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2872766452-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2872766452-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL3SMA_003", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303828-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1236303828-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL3SMA_003", "description": "This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radar as well as a variety of ancillary data sources. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).", "license": "proprietary" }, @@ -168872,26 +168885,26 @@ { "id": "SPL4CMDL_007", "title": "SMAP L4 Global Daily 9 km EASE-Grid Carbon Net Ecosystem Exchange V007", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2534576405-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2534576405-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL4CMDL_007", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665243-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665243-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL4CMDL_007", "description": "The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based terrestrial carbon flux model informed by the following: Soil Moisture Active Passive (SMAP) L-band microwave observations, land cover and vegetation inputs from the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and the Goddard Earth Observing System Model, Version 5 (GEOS-5) land model assimilation system. Parameters are computed using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.", "license": "proprietary" }, { "id": "SPL4CMDL_007", "title": "SMAP L4 Global Daily 9 km EASE-Grid Carbon Net Ecosystem Exchange V007", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665243-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665243-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL4CMDL_007", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2534576405-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2534576405-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL4CMDL_007", "description": "The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based terrestrial carbon flux model informed by the following: Soil Moisture Active Passive (SMAP) L-band microwave observations, land cover and vegetation inputs from the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and the Goddard Earth Observing System Model, Version 5 (GEOS-5) land model assimilation system. Parameters are computed using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.", "license": "proprietary" }, @@ -168924,52 +168937,52 @@ { "id": "SPL4SMGP_007", "title": "SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V007", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2531308461-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2531308461-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL4SMGP_007", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665761-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665761-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL4SMGP_007", "description": "SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.", "license": "proprietary" }, { "id": "SPL4SMGP_007", "title": "SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V007", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665761-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938665761-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL4SMGP_007", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2531308461-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2531308461-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL4SMGP_007", "description": "SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.", "license": "proprietary" }, { "id": "SPL4SMLM_007", "title": "SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants V007", - "catalog": "NSIDC_ECS STAC Catalog", + "catalog": "NSIDC_CPRD STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2537926833-NSIDC_ECS.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2537926833-NSIDC_ECS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL4SMLM_007", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938666109-NSIDC_CPRD.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938666109-NSIDC_CPRD.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL4SMLM_007", "description": "SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.", "license": "proprietary" }, { "id": "SPL4SMLM_007", "title": "SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants V007", - "catalog": "NSIDC_CPRD STAC Catalog", + "catalog": "NSIDC_ECS STAC Catalog", "state_date": "2015-03-31", "end_date": "", "bbox": "-180, -85.044, 180, 85.044", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2938666109-NSIDC_CPRD.umm_json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2938666109-NSIDC_CPRD.html", - "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_CPRD/collections/SPL4SMLM_007", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2537926833-NSIDC_ECS.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2537926833-NSIDC_ECS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NSIDC_ECS/collections/SPL4SMLM_007", "description": "SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.", "license": "proprietary" }, @@ -249183,6 +249196,32 @@ "description": "TUR corresponds to the Turbidity water quality products, units are expressed in Formazin Nephelometric Unit (FNU).", "license": "proprietary" }, + { + "id": "urn:eop:VITO:TERRASCOPE_S3_LST_3_S10_V1_V1", + "title": "Sentinel-3 Level 3 Land Surface Temperature 1 km 10-daily synthesis products - V1", + "catalog": "FEDEO STAC Catalog", + "state_date": "2020-07-01", + "end_date": "2027-12-31", + "bbox": "-180, -56, 180, 75", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324212563-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324212563-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S3_LST_3_S10_V1_V1", + "description": "The Sentinel-3, Level 3 Land Surface Temperature S10 products (S3_LST_3_S10) contain 1 km 10-daily LST composites. TMeasurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km (1\u00c2\u00b0 / 112). The LST and LST_unc are provided. LST is derived as the mean value of unflagged S3_LST_3_S1_V1 inputs. LST_unc is propagated from S3_LST_3_S1_V1 inputs\", \"title\": \"Sentinel-3 Level 2 Synergy 1 km VEGETATION-Like 10-daily synthesis TOC reflectance and NDVI - V1.", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S3_LST_3_S1_V1_V1", + "title": "Sentinel-3 Level 3 Land Surface Temperature daily synthesis product - V1", + "catalog": "FEDEO STAC Catalog", + "state_date": "2020-07-01", + "end_date": "2025-12-31", + "bbox": "-180, -56, 180, 75", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213481-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213481-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S3_LST_3_S1_V1_V1", + "description": "The Sentinel-3, Level 3 Land Surface Temperature S1 products (S3_LST_3_S1) contain 1 km daily LST composites. TMeasurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km (1\u00c2\u00b0 / 112). The LST and LST_unc are provided, derived from unflagged S3_SL_2_LST inputs at minimum viewing zenith angle.", + "license": "proprietary" + }, { "id": "urn:eop:VITO:TERRASCOPE_S3_SY_2_V10_V1_V1", "title": "Sentinel-3 Level 2 Synergy 1 km VEGETATION-Like 10-daily synthesis TOC reflectance and NDVI - V1", @@ -249443,6 +249482,84 @@ "description": "Contains binned Level-2 TROPOMI HCHO retrievals. The L3 binning algorithm calculates a weighted yearly average density based on daily Level-3 HCHO data.", "license": "proprietary" }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_CAMS_TD_V2_V2", + "title": "Sentinel-5P Level-3 NO2 from CAMS Daily Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-25, 30, 45, 72", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213065-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213065-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_NO2_CAMS_TD_V2_V2", + "description": "Contains binned Level-2 TROPOMI NO2 retrievals using CAMS. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_CAMS_TM_V2_V2", + "title": "Sentinel-5P Level-3 NO2 from CAMS Monthly Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-25, 30, 45, 72", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214385-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214385-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_NO2_CAMS_TM_V2_V2", + "description": "Contains binned Level-2 TROPOMI NO2 retrievals using CAMS. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_CAMS_TY_V2_V2", + "title": "Sentinel-5P Level-3 NO2 from CAMS Yearly Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-25, 30, 45, 72", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213603-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213603-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_NO2_CAMS_TY_V2_V2", + "description": "Contains binned Level-2 TROPOMI NO2 retrievals using CAMS. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_SURFACE_TD_V2_V2", + "title": "Sentinel-5P Level-3 NO2 Surface Daily Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-5, 42, 9, 54", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324212624-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324212624-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_NO2_SURFACE_TD_V2_V2", + "description": "Contains binned Level-2 TROPOMI NO2 Surface retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_SURFACE_TM_V2_V2", + "title": "Sentinel-5P Level-3 NO2 Surface Monthly Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-5, 42, 9, 54", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214307-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214307-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_NO2_SURFACE_TM_V2_V2", + "description": "Contains binned Level-2 TROPOMI NO2 Surface retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_SURFACE_TY_V2_V2", + "title": "Sentinel-5P Level-3 NO2 Surface Yearly Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-5, 42, 9, 54", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324212640-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324212640-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_NO2_SURFACE_TY_V2_V2", + "description": "Contains binned Level-2 TROPOMI NO2 Surface retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, { "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TD_V1_V1", "title": "Sentinel-5P Level-3 NO2 Daily Product - V1", @@ -249521,6 +249638,45 @@ "description": "Contains binned Level-2 TROPOMI NO2 retrievals. The L3 binning algorithm calculates a weighted yearly average density based on daily Level-3 NO2 data.", "license": "proprietary" }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_SO2CBR_TD_V2_V2", + "title": "Sentinel-5P Level-3 SO2CBR Daily Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-180, -89, 180, 89", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214371-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214371-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_SO2CBR_TD_V2_V2", + "description": "Contains binned Level-2 Sulfur Dioxide (SO2) vertical column products using COvariance-Based Retrieval Algorithm (COBRA) retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_SO2CBR_TM_V2_V2", + "title": "Sentinel-5P Level-3 SO2CBR Monthly Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-180, -89, 180, 89", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213174-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324213174-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_SO2CBR_TM_V2_V2", + "description": "Contains binned Level-2 Sulfur Dioxide (SO2) vertical column products using COvariance-Based Retrieval Algorithm (COBRA) retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, + { + "id": "urn:eop:VITO:TERRASCOPE_S5P_L3_SO2CBR_TY_V2_V2", + "title": "Sentinel-5P Level-3 SO2CBR Yearly Product - V2", + "catalog": "FEDEO STAC Catalog", + "state_date": "2018-07-01", + "end_date": "2025-12-31", + "bbox": "-180, -89, 180, 89", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214083-FEDEO.umm_json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C3324214083-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/urn%3Aeop%3AVITO%3ATERRASCOPE_S5P_L3_SO2CBR_TY_V2_V2", + "description": "Contains binned Level-2 Sulfur Dioxide (SO2) vertical column products using COvariance-Based Retrieval Algorithm (COBRA) retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html?", + "license": "proprietary" + }, { "id": "urn:ogc:def:EOP:VITO:VGT_P_1", "title": "Physical products of SPOT VEGETATION (VGT-P)", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index 83a44dc..2f3840a 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -1473,8 +1473,8 @@ AERDT_L2_VIIRS_NOAA20_NRT_2 VIIRS/NOAA-20 Dark Target Aerosol L2 6-Min Swath (v2 AERDT_L2_VIIRS_SNPP_2 VIIRS/SNPP Dark Target Aerosol L2 6-Min Swath 6 km V2 LAADS STAC Catalog 2012-03-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2771506686-LAADS.umm_json The VIIRS/SNPP Dark Target Aerosol L2 6-Min Swath 6 km product provides satellite-derived measurements of Aerosol Optical Thickness (AOT) and their properties over land and ocean, and spectral AOT and their size parameters over oceans every 6 minutes, globally. The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) incarnation of the dark target (DT) aerosol product is based on the same DT algorithm that was developed and used to derive products from the Terra and Aqua mission’s MODIS instruments. Two separate and distinct DT algorithms exist. One helps retrieve aerosol information over ocean (dark in visible and longer wavelengths), while the second aids retrievals over vegetated/dark-soiled land (dark in the visible). This orbit-level product (Short-name: AERDT_L2_VIIRS_SNPP) has an at-nadir resolution of 6 km x 6 km, and progressively increases away from nadir given the sensor's scanning geometry and Earth's curvature. Viewed differently, this product's resolution accommodates 8 x 8 native VIIRS moderate-resolution (M-band) pixels that nominally have ~750 m horizontal pixel size. Hence, the Level-2 Dark Target Aerosol Optical Thickness data product incorporates 64 (750 m) pixels over a 6-minute acquisition. Version 2.0 constitutes the latest collection of the L2 Dark Target Aerosol product and contains improvements over its previous collection (v1.1). For more information consult LAADS product description page at: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/AERDT_L2_VIIRS_SNPP Or, Dark Target aerosol team Page at: https://darktarget.gsfc.nasa.gov/ proprietary AERDT_L2_VIIRS_SNPP_NRT_1.1 VIIRS/SNPP Dark Target Aerosol L2 6-Min Swath ASIPS STAC Catalog 2020-06-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1976333380-ASIPS.umm_json The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) NASA standard Level-2 (L2) dark target (DT) aerosol product provides satellite-derived measurements of Aerosol Optical Thickness (AOT) and their properties over land and ocean, and spectral AOT and their size parameters over oceans every 6 minutes, globally. The VIIRS incarnation of the DT aerosol product is based on the same DT algorithm that was developed and used to derive products from the Terra and Aqua mission’s MODIS instruments. Two separate and distinct DT algorithms exist. One helps retrieve aerosol information over ocean (dark in visible and longer wavelengths), while the second aids retrievals over vegetated/dark-soiled land (dark in the visible). proprietary AERDT_L2_VIIRS_SNPP_NRT_2 VIIRS/SNPP Dark Target Aerosol L2 6-Min Swath (v2.0) ASIPS STAC Catalog 2023-11-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2812412751-ASIPS.umm_json The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) NASA standard Level-2 (L2) dark target (DT) aerosol product provides satellite-derived measurements of Aerosol Optical Thickness (AOT) and their properties over land and ocean, and spectral AOT and their size parameters over oceans every 6 minutes, globally. The VIIRS incarnation of the DT aerosol product is based on the same DT algorithm that was developed and used to derive products from the Terra and Aqua mission’s MODIS instruments. Two separate and distinct DT algorithms exist. One helps retrieve aerosol information over ocean (dark in visible and longer wavelengths), while the second aids retrievals over vegetated/dark-soiled land (dark in the visible). This orbit-level product (Short-name: AERDT_L2_VIIRS_SNPP_NRT) has an at-nadir resolution of 6 km x 6 km, and progressively increases away from nadir given the sensor's scanning geometry and Earth's curvature. Viewed differently, this product's resolution accommodates 8 x 8 native VIIRS moderate-resolution (M-band) pixels that nominally have ~750 m horizontal pixel size. Hence, the Level-2 Dark Target Aerosol Optical Thickness data product incorporates 64 (750 m) pixels over a 6-minute acquisition. Version 2.0 constitutes the latest collection of the L2 Dark Target Aerosol product and contains improvements over its previous collection (v1.1). proprietary -AERIALDIGI Aircraft Scanners - AERIALDIGI CEOS_EXTRA STAC Catalog 1987-10-06 -180, 24, -60, 72 https://cmr.earthdata.nasa.gov/search/concepts/C2231548706-CEOS_EXTRA.umm_json The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees. proprietary AERIALDIGI Aircraft Scanners USGS_LTA STAC Catalog 1987-10-06 -180, 24, -60, 72 https://cmr.earthdata.nasa.gov/search/concepts/C1220566211-USGS_LTA.umm_json The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees. proprietary +AERIALDIGI Aircraft Scanners - AERIALDIGI CEOS_EXTRA STAC Catalog 1987-10-06 -180, 24, -60, 72 https://cmr.earthdata.nasa.gov/search/concepts/C2231548706-CEOS_EXTRA.umm_json The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees. proprietary AERONET_aerosol_706_1 SAFARI 2000 AERONET Ground-based Aerosol Data, Dry Season 2000 ORNL_CLOUD STAC Catalog 1999-01-01 2001-12-31 28.03, -26.19, 28.03, -26.19 https://cmr.earthdata.nasa.gov/search/concepts/C2788355135-ORNL_CLOUD.umm_json AERONET (AErosol RObotic NETwork) is an optical ground-based aerosol monitoring network and data archive system. AERONET measurements of the column-integrated aerosol optical properties in the southern Africa region were made by sun-sky radiometers at several sites in August-September 2000 as a part of the SAFARI 2000 dry season aircraft campaign. AERONET is supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions. The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities. Data from this collaboration provides globally-distributed near-real-time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. proprietary AEROSE_0 Saharan Dust AERosols and Ocean Science Expeditions OB_DAAC STAC Catalog 2004-03-02 2017-04-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2108358203-OB_DAAC.umm_json AEROSE is an internationally recognized series of trans-Atlantic field campaigns conducted onboard the NOAA Ship Ronald H. Brown designed to explore African air mass outflows and their impacts on climate, weather, and environmental health. proprietary AE_5DSno_2 AMSR-E/Aqua 5-Day L3 Global Snow Water Equivalent EASE-Grids V002 NSIDC_ECS STAC Catalog 2002-06-20 2011-10-03 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179014698-NSIDC_ECS.umm_json These Level-3 Snow Water Equivalent (SWE) data sets contain SWE data and quality assurance flags mapped to Northern and Southern Hemisphere 25 km Equal-Area Scalable Earth Grids (EASE-Grids). proprietary @@ -2421,8 +2421,8 @@ AST_L1B_003 ASTER L1B Registered Radiance at the Sensor V003 LPDAAC_ECS STAC Cat AST_L1T_003 ASTER Level 1 precision terrain corrected registered at-sensor radiance V003 LPDAAC_ECS STAC Catalog 2000-03-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000320-LPDAAC_ECS.umm_json The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) data contains calibrated at-sensor radiance, which corresponds with the ASTER Level 1B (AST_L1B) (https://doi.org/10.5067/ASTER/AST_L1B.003), that has been geometrically corrected, and rotated to a north-up UTM projection. The AST_L1T is created from a single resampling of the corresponding ASTER L1A (AST_L1A) (https://doi.org/10.5067/ASTER/AST_L1A.003) product. The bands available in the AST_L1T depend on the bands in the AST_L1A and can include up to three Visible and Near Infrared (VNIR) bands, six Shortwave Infrared (SWIR) bands, and five Thermal Infrared (TIR) bands. The AST_L1T dataset does not include the aft-looking VNIR band 3. The precision terrain correction process incorporates GLS2000 digital elevation data with derived ground control points (GCPs) to achieve topographic accuracy for all daytime scenes where correlation statistics reach a minimum threshold. Alternate levels of correction are possible (systematic terrain, systematic, or precision) for scenes acquired at night or that otherwise represent a reduced quality ground image (e.g., cloud cover). For daytime images, if the VNIR or SWIR telescope collected data and precision correction was attempted, each precision terrain corrected image will have an accompanying independent quality assessment. It will include the geometric correction available for distribution in both as a text file and a single band browse images with the valid GCPs overlaid. This multi-file product also includes georeferenced full resolution browse images. The number of browse images and the band combinations of the images depends on the bands available in the corresponding (AST_L1A) (https://doi.org/10.5067/ASTER/AST_L1A.003) dataset. proprietary AST_L1T_031 ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance V031 LPDAAC_ECS STAC Catalog 2000-03-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2052604735-LPDAAC_ECS.umm_json The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Level 1 Precision Terrain Corrected Registered At-Sensor Radiance (AST_L1T) Version 3.1 data contains calibrated at-sensor radiance, which corresponds with the ASTER Level 1B AST_L1B (https://doi.org/10.5067/ASTER/AST_L1B.003), that has been geometrically corrected and rotated to a north-up UTM projection. The AST_L1T V3.1 is created from a single resampling of the corresponding ASTER L1A AST_L1A (https://doi.org/10.5067/ASTER/AST_L1A.003) product. Radiometric calibration coefficients Version 5 (RCC V5) are applied to this product to improve the degradation curve derived from vicarious and lunar calibrations. The bands available in the AST_L1T V3.1 depend on the bands in the AST_L1A and can include up to three Visible and Near Infrared (VNIR) bands, six Shortwave Infrared (SWIR) bands, and five Thermal Infrared (TIR) bands. The AST_L1T V3.1 dataset does not include the aft-looking VNIR band 3. The 3.1 version uses a precision terrain correction process that incorporates GLS2000 digital elevation data with derived ground control points (GCPs) to achieve topographic accuracy for all daytime scenes where correlation statistics reach a minimum threshold. Alternate levels of correction are possible (systematic terrain, systematic, or precision) for scenes acquired at night or that otherwise represent a reduced quality ground image (e.g., cloud cover). For daytime images, if the VNIR or SWIR telescope collected data and precision correction was attempted, each precision terrain corrected image will have an accompanying independent quality assessment. It will include the geometric correction available for distribution in both a text file and a single band browse image with the valid GCPs overlaid. This multi-file product also includes georeferenced full resolution browse images. The number of browse images and the band combinations of the images depend on the bands available in the corresponding AST_L1A dataset. The AST_L1T V3.1 data product is only available through NASA’s Earthdata Search. The ASTER L1T V3.1 Order Instructions provide step-by-step directions for ordering this product. proprietary ATCS_0 The A-Train Cloud Segmentation Dataset OB_DAAC STAC Catalog 2007-11-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2172083412-OB_DAAC.umm_json ATCS is a dataset designed to train deep learning models to volumetrically segment clouds from multi-angle satellite imagery. The dataset consists of spatiotemporally aligned patches of multi-angle polarimetry from the POLDER sensor aboard the PARASOL mission and vertical cloud profiles from the 2B-CLDCLASS product using the cloud profiling radar (CPR) aboard CloudSat. proprietary -ATL02_006 ATLAS/ICESat-2 L1B Converted Telemetry Data V006 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2541211133-NSIDC_ECS.umm_json This data set (ATL02) contains science-unit-converted time-ordered telemetry data, calibrated for instrument effects, downlinked from the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The data are used by the ATLAS/ICESat-2 Science Investigator-led Processing System (SIPS) for system-level, quality control analysis and as source data for ATLAS/ICESat-2 Level-2 products and Precision Orbit Determination (POD) and Precision Pointing Determination (PPD) computations. proprietary ATL02_006 ATLAS/ICESat-2 L1B Converted Telemetry Data V006 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2547589158-NSIDC_CPRD.umm_json This data set (ATL02) contains science-unit-converted time-ordered telemetry data, calibrated for instrument effects, downlinked from the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The data are used by the ATLAS/ICESat-2 Science Investigator-led Processing System (SIPS) for system-level, quality control analysis and as source data for ATLAS/ICESat-2 Level-2 products and Precision Orbit Determination (POD) and Precision Pointing Determination (PPD) computations. proprietary +ATL02_006 ATLAS/ICESat-2 L1B Converted Telemetry Data V006 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2541211133-NSIDC_ECS.umm_json This data set (ATL02) contains science-unit-converted time-ordered telemetry data, calibrated for instrument effects, downlinked from the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The data are used by the ATLAS/ICESat-2 Science Investigator-led Processing System (SIPS) for system-level, quality control analysis and as source data for ATLAS/ICESat-2 Level-2 products and Precision Orbit Determination (POD) and Precision Pointing Determination (PPD) computations. proprietary ATL03_006 ATLAS/ICESat-2 L2A Global Geolocated Photon Data V006 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2559919423-NSIDC_ECS.umm_json This data set (ATL03) contains height above the WGS 84 ellipsoid (ITRF2014 reference frame), latitude, longitude, and time for all photons downlinked by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The ATL03 product was designed to be a single source for all photon data and ancillary information needed by higher-level ATLAS/ICESat-2 products. As such, it also includes spacecraft and instrument parameters and ancillary data not explicitly required for ATL03. proprietary ATL03_006 ATLAS/ICESat-2 L2A Global Geolocated Photon Data V006 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2596864127-NSIDC_CPRD.umm_json This data set (ATL03) contains height above the WGS 84 ellipsoid (ITRF2014 reference frame), latitude, longitude, and time for all photons downlinked by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. The ATL03 product was designed to be a single source for all photon data and ancillary information needed by higher-level ATLAS/ICESat-2 products. As such, it also includes spacecraft and instrument parameters and ancillary data not explicitly required for ATL03. proprietary ATL03_ANC_MASKS_1 ATLAS/ICESat-2 ATL03 Ancillary Masks, Version 1 NSIDCV0 STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2278879612-NSIDCV0.umm_json This ancillary ICESat-2 data set contains four static surface masks (land ice, sea ice, land, and ocean) provided by ATL03 to reduce the volume of data that each surface-specific along-track data product is required to process. For example, the land ice surface mask directs the ATL06 land ice algorithm to consider data from only those areas of interest to the land ice community. Similarly, the sea ice, land, and ocean masks direct ATL07, ATL08, and ATL12 algorithms, respectively. A detailed description of all four masks can be found in section 4 of the Algorithm Theoretical Basis Document (ATBD) for ATL03 linked under technical references. proprietary @@ -2431,8 +2431,8 @@ ATL04_006 ATLAS/ICESat-2 L2A Normalized Relative Backscatter Profiles V006 NSIDC ATL06_006 ATLAS/ICESat-2 L3A Land Ice Height V006 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2670138092-NSIDC_CPRD.umm_json This data set (ATL06) provides geolocated, land-ice surface heights (above the WGS 84 ellipsoid, ITRF2014 reference frame), plus ancillary parameters that can be used to interpret and assess the quality of the height estimates. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL06_006 ATLAS/ICESat-2 L3A Land Ice Height V006 NSIDC_ECS STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2564427300-NSIDC_ECS.umm_json This data set (ATL06) provides geolocated, land-ice surface heights (above the WGS 84 ellipsoid, ITRF2014 reference frame), plus ancillary parameters that can be used to interpret and assess the quality of the height estimates. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL07QL_006 ATLAS/ICESat-2 L3A Sea Ice Height Quick Look V006 NSIDC_ECS STAC Catalog 2024-08-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548344839-NSIDC_ECS.umm_json ATL07QL is the quick look version of ATL07. Once final ATL07 files are available, the corresponding ATL07QL files will be removed. ATL07 contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations and inverted barometer effects. Height statistics and apparent reflectance are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary -ATL07_006 ATLAS/ICESat-2 L3A Sea Ice Height V006 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2713030505-NSIDC_CPRD.umm_json The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Height statistics and apparent reflectance are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL07_006 ATLAS/ICESat-2 L3A Sea Ice Height V006 NSIDC_ECS STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2564625052-NSIDC_ECS.umm_json The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Height statistics and apparent reflectance are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary +ATL07_006 ATLAS/ICESat-2 L3A Sea Ice Height V006 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2713030505-NSIDC_CPRD.umm_json The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Height statistics and apparent reflectance are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL08QL_006 ATLAS/ICESat-2 L3A Land and Vegetation Height Quick Look V006 NSIDC_ECS STAC Catalog 2024-08-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548345108-NSIDC_ECS.umm_json ATL08QL is the quick look version of ATL08. Once final ATL08 files are available the corresponding ATL08QL files will be removed. ATL08 contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 signal photons. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL08_006 ATLAS/ICESat-2 L3A Land and Vegetation Height V006 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2613553260-NSIDC_CPRD.umm_json This data set (ATL08) contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 signal photons. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL08_006 ATLAS/ICESat-2 L3A Land and Vegetation Height V006 NSIDC_ECS STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2565090645-NSIDC_ECS.umm_json This data set (ATL08) contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 signal photons. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary @@ -2442,35 +2442,35 @@ ATL09_006 ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric Lay ATL10QL_006 ATLAS/ICESat-2 L3A Sea Ice Freeboard Quick Look V006 NSIDC_ECS STAC Catalog 2024-08-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2551529078-NSIDC_ECS.umm_json ATL10QL is the quick look version of ATL10. Once final ATL10 files are available the corresponding ATL10QL files will be removed. ATL10 contains estimates of sea ice freeboard, calculated using three different approaches. Sea ice leads used to establish the reference sea surface and descriptive statistics used in the height estimates are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL10_006 ATLAS/ICESat-2 L3A Sea Ice Freeboard V006 NSIDC_ECS STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2567856357-NSIDC_ECS.umm_json This data set (ATL10) contains estimates of sea ice freeboard, calculated using three different approaches. Sea ice leads used to establish the reference sea surface and descriptive statistics used in the height estimates are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL10_006 ATLAS/ICESat-2 L3A Sea Ice Freeboard V006 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2613553243-NSIDC_CPRD.umm_json This data set (ATL10) contains estimates of sea ice freeboard, calculated using three different approaches. Sea ice leads used to establish the reference sea surface and descriptive statistics used in the height estimates are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary -ATL11_006 ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series V006 NSIDC_ECS STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2750966856-NSIDC_ECS.umm_json This data set provides time series of land-ice surface heights derived from the ICESat-2 ATL06 Land Ice Height product. It is intended primarily as an input for higher level gridded products but can also be used on its own as a spatially organized product that allows easy access to height-change information derived from ICESat-2 observations. proprietary ATL11_006 ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series V006 NSIDC_CPRD STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2752556504-NSIDC_CPRD.umm_json This data set provides time series of land-ice surface heights derived from the ICESat-2 ATL06 Land Ice Height product. It is intended primarily as an input for higher level gridded products but can also be used on its own as a spatially organized product that allows easy access to height-change information derived from ICESat-2 observations. proprietary +ATL11_006 ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series V006 NSIDC_ECS STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2750966856-NSIDC_ECS.umm_json This data set provides time series of land-ice surface heights derived from the ICESat-2 ATL06 Land Ice Height product. It is intended primarily as an input for higher level gridded products but can also be used on its own as a spatially organized product that allows easy access to height-change information derived from ICESat-2 observations. proprietary ATL12_006 ATLAS/ICESat-2 L3A Ocean Surface Height V006 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2613553216-NSIDC_CPRD.umm_json This data set (ATL12) contains along-track sea surface height of the global open ocean, including the ice-free seasonal ice zone and near-coast regions. Estimates of height distributions, significant wave height, sea state bias, and 10 m heights are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL12_006 ATLAS/ICESat-2 L3A Ocean Surface Height V006 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2560378689-NSIDC_ECS.umm_json This data set (ATL12) contains along-track sea surface height of the global open ocean, including the ice-free seasonal ice zone and near-coast regions. Estimates of height distributions, significant wave height, sea state bias, and 10 m heights are also provided. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. proprietary ATL13QL_006 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data Quick Look V006 NSIDC_ECS STAC Catalog 2024-08-30 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2650092501-NSIDC_ECS.umm_json ATL13QL is the quick look version of ATL13. Once final ATL13 files are available the corresponding ATL13QL files will be removed. ATL13 contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7 km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). proprietary -ATL13_006 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2650116584-NSIDC_ECS.umm_json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). proprietary ATL13_006 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.umm_json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). proprietary -ATL14_003 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V003 NSIDC_ECS STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776464127-NSIDC_ECS.umm_json ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change. proprietary +ATL13_006 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2650116584-NSIDC_ECS.umm_json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). proprietary ATL14_003 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V003 NSIDC_CPRD STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776895337-NSIDC_CPRD.umm_json ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change. proprietary -ATL14_004 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V004 NSIDC_ECS STAC Catalog 2019-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3159684163-NSIDC_ECS.umm_json This data set contains a high-resolution (100 m) gridded digital elevation model (DEM) for the Antarctic ice sheet and regions around the Arctic. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11). proprietary +ATL14_003 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V003 NSIDC_ECS STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776464127-NSIDC_ECS.umm_json ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change. proprietary ATL14_004 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V004 NSIDC_CPRD STAC Catalog 2019-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3162179692-NSIDC_CPRD.umm_json This data set contains a high-resolution (100 m) gridded digital elevation model (DEM) for the Antarctic ice sheet and regions around the Arctic. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11). proprietary +ATL14_004 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V004 NSIDC_ECS STAC Catalog 2019-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3159684163-NSIDC_ECS.umm_json This data set contains a high-resolution (100 m) gridded digital elevation model (DEM) for the Antarctic ice sheet and regions around the Arctic. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11). proprietary ATL15_003 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V003 NSIDC_ECS STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776464171-NSIDC_ECS.umm_json ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change. proprietary ATL15_003 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V003 NSIDC_CPRD STAC Catalog 2019-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776895930-NSIDC_CPRD.umm_json ATL14 and ATL15 bring the time-varying height estimates provided in ATLAS/ICESat-2 L3B Annual Land Ice Height (ATL11) into a gridded format. ATL14 is a high-resolution (100 m) digital elevation model (DEM) that provides spatially continuous gridded data of ice sheet surface height. The data can be used to initialize ice sheet models, as boundary conditions for atmospheric models, or to help with the reduction of other satellite data such as optical imagery or synthetic aperture radar (SAR). ATL15 provides coarser resolution (1 km, 10 km, 20 km, and 40 km) height-change maps at 3-month intervals, allowing for visualization of height-change patterns and calculation of integrated regional volume change. proprietary -ATL15_004 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V004 NSIDC_ECS STAC Catalog 2019-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3159684532-NSIDC_ECS.umm_json This data set contains land ice height changes and change rates for the Antarctic ice sheet and regions around the Arctic gridded at four spatial resolutions (1 km, 10 km, 20 km, and 40 km). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11). proprietary ATL15_004 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V004 NSIDC_CPRD STAC Catalog 2019-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3162334027-NSIDC_CPRD.umm_json This data set contains land ice height changes and change rates for the Antarctic ice sheet and regions around the Arctic gridded at four spatial resolutions (1 km, 10 km, 20 km, and 40 km). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11). proprietary +ATL15_004 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height Change V004 NSIDC_ECS STAC Catalog 2019-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C3159684532-NSIDC_ECS.umm_json This data set contains land ice height changes and change rates for the Antarctic ice sheet and regions around the Arctic gridded at four spatial resolutions (1 km, 10 km, 20 km, and 40 km). The data are derived from the ATLAS/ICESat-2 L3B Slope-Corrected Land Ice Height Time Series product (ATL11). proprietary ATL16_005 ATLAS/ICESat-2 L3B Weekly Gridded Atmosphere V005 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2769337070-NSIDC_CPRD.umm_json This product reports weekly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency. proprietary ATL16_005 ATLAS/ICESat-2 L3B Weekly Gridded Atmosphere V005 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2737997243-NSIDC_ECS.umm_json This product reports weekly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency. proprietary -ATL17_005 ATLAS/ICESat-2 L3B Monthly Gridded Atmosphere V005 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2769338020-NSIDC_CPRD.umm_json This data set contains a gridded summary of monthly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency. proprietary ATL17_005 ATLAS/ICESat-2 L3B Monthly Gridded Atmosphere V005 NSIDC_ECS STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2737997483-NSIDC_ECS.umm_json This data set contains a gridded summary of monthly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency. proprietary -ATL19_003 ATLAS/ICESat-2 L3B Monthly Gridded Dynamic Ocean Topography V003 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2754956786-NSIDC_CPRD.umm_json This data set contains monthly gridded dynamic ocean topography (DOT), derived from along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided in this data set. Both single beam and all-beam gridded averages are available in this data set. Single beam averages are useful to identify biases among the beams and the all-beam averages are advised to use for physical oceanography. proprietary +ATL17_005 ATLAS/ICESat-2 L3B Monthly Gridded Atmosphere V005 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2769338020-NSIDC_CPRD.umm_json This data set contains a gridded summary of monthly global cloud fraction, total column optical depth over the oceans, polar cloud fraction, blowing snow frequency, apparent surface reflectivity, and ground detection frequency. proprietary ATL19_003 ATLAS/ICESat-2 L3B Monthly Gridded Dynamic Ocean Topography V003 NSIDC_ECS STAC Catalog 2018-10-13 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2746899536-NSIDC_ECS.umm_json This data set contains monthly gridded dynamic ocean topography (DOT), derived from along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided in this data set. Both single beam and all-beam gridded averages are available in this data set. Single beam averages are useful to identify biases among the beams and the all-beam averages are advised to use for physical oceanography. proprietary +ATL19_003 ATLAS/ICESat-2 L3B Monthly Gridded Dynamic Ocean Topography V003 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2754956786-NSIDC_CPRD.umm_json This data set contains monthly gridded dynamic ocean topography (DOT), derived from along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided in this data set. Both single beam and all-beam gridded averages are available in this data set. Single beam averages are useful to identify biases among the beams and the all-beam averages are advised to use for physical oceanography. proprietary ATL20_004 ATLAS/ICESat-2 L3B Daily and Monthly Gridded Sea Ice Freeboard V004 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2753295020-NSIDC_CPRD.umm_json ATL20 contains daily and monthly gridded estimates of sea ice freeboard, derived from along-track freeboard estimates in the ATLAS/ICESat-2 L3A Sea Ice Freeboard product (ATL10). Data are gridded at 25 km using the SSM/I Polar Stereographic Projection. proprietary ATL20_004 ATLAS/ICESat-2 L3B Daily and Monthly Gridded Sea Ice Freeboard V004 NSIDC_ECS STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2666857908-NSIDC_ECS.umm_json ATL20 contains daily and monthly gridded estimates of sea ice freeboard, derived from along-track freeboard estimates in the ATLAS/ICESat-2 L3A Sea Ice Freeboard product (ATL10). Data are gridded at 25 km using the SSM/I Polar Stereographic Projection. proprietary ATL21_003 ATLAS/ICESat-2 L3B Daily and Monthly Gridded Polar Sea Surface Height Anomaly V003 NSIDC_ECS STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2737912334-NSIDC_ECS.umm_json ATL21 contains daily and monthly gridded polar sea surface height (SSH) anomalies, derived from the along-track ATLAS/ICESat-2 L3A Sea Ice Height product (ATL10, V6). The ATL10 product identifies leads in sea ice and establishes a reference sea surface used to estimate SSH in 10 km along-track segments. ATL21 aggregates the ATL10 along-track SSH estimates and computes daily and monthly gridded SSH anomaly in NSIDC Polar Stereographic Northern and Southern Hemisphere 25 km grids. proprietary ATL21_003 ATLAS/ICESat-2 L3B Daily and Monthly Gridded Polar Sea Surface Height Anomaly V003 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2753316241-NSIDC_CPRD.umm_json ATL21 contains daily and monthly gridded polar sea surface height (SSH) anomalies, derived from the along-track ATLAS/ICESat-2 L3A Sea Ice Height product (ATL10, V6). The ATL10 product identifies leads in sea ice and establishes a reference sea surface used to estimate SSH in 10 km along-track segments. ATL21 aggregates the ATL10 along-track SSH estimates and computes daily and monthly gridded SSH anomaly in NSIDC Polar Stereographic Northern and Southern Hemisphere 25 km grids. proprietary ATL22_003 ATLAS/ICESat-2 L3B Mean Inland Surface Water Data V003 NSIDC_ECS STAC Catalog 2018-10-14 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2738530540-NSIDC_ECS.umm_json ATL22 is a derivative of the continuous Level 3A ATL13 Along Track Inland Surface Water Data product. ATL13 contains the high-resolution, along-track inland water surface profiles derived from analysis of the geolocated photon clouds from the ATL03 product. Starting from ATL13, ATL22 computes the mean surface water quantities with no additional photon analysis. The two data products, ATL22 and ATL13, can be used in conjunction as they include the same orbit and water body nomenclature independent from version numbers. proprietary ATL22_003 ATLAS/ICESat-2 L3B Mean Inland Surface Water Data V003 NSIDC_CPRD STAC Catalog 2018-10-14 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2761722214-NSIDC_CPRD.umm_json ATL22 is a derivative of the continuous Level 3A ATL13 Along Track Inland Surface Water Data product. ATL13 contains the high-resolution, along-track inland water surface profiles derived from analysis of the geolocated photon clouds from the ATL03 product. Starting from ATL13, ATL22 computes the mean surface water quantities with no additional photon analysis. The two data products, ATL22 and ATL13, can be used in conjunction as they include the same orbit and water body nomenclature independent from version numbers. proprietary -ATL23_001 ATLAS/ICESat-2 L3B Monthly 3-Month Gridded Dynamic Ocean Topography V001 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2765424272-NSIDC_CPRD.umm_json This data set contains 3-month gridded averages of dynamic ocean topography (DOT) over midlatitude, north-polar, and south-polar grids derived from the along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided. Both single beam and all-beam gridded averages are available. Simple averages, degree-of-freedom averages, and averages interpolated to the center of grid cells are included, as well as uncertainty estimates. proprietary ATL23_001 ATLAS/ICESat-2 L3B Monthly 3-Month Gridded Dynamic Ocean Topography V001 NSIDC_ECS STAC Catalog 2018-10-13 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2692731693-NSIDC_ECS.umm_json This data set contains 3-month gridded averages of dynamic ocean topography (DOT) over midlatitude, north-polar, and south-polar grids derived from the along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided. Both single beam and all-beam gridded averages are available. Simple averages, degree-of-freedom averages, and averages interpolated to the center of grid cells are included, as well as uncertainty estimates. proprietary +ATL23_001 ATLAS/ICESat-2 L3B Monthly 3-Month Gridded Dynamic Ocean Topography V001 NSIDC_CPRD STAC Catalog 2018-10-13 -180, -88, 180, 88 https://cmr.earthdata.nasa.gov/search/concepts/C2765424272-NSIDC_CPRD.umm_json This data set contains 3-month gridded averages of dynamic ocean topography (DOT) over midlatitude, north-polar, and south-polar grids derived from the along-track ATLAS/ICESat-2 L3A Ocean Surface Height product (ATL12). Monthly gridded sea surface height (SSH) can be calculated by adding the mean DOT and the weighted average geoid height also provided. Both single beam and all-beam gridded averages are available. Simple averages, degree-of-freedom averages, and averages interpolated to the center of grid cells are included, as well as uncertainty estimates. proprietary ATLAS_DEALIASED_SASS_L2_1 SEASAT SCATTEROMETER DEALIASED OCEAN WIND VECTORS (Atlas) POCLOUD STAC Catalog 1978-07-07 1978-10-10 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2617197627-POCLOUD.umm_json Contains wind speeds and directions derived from the Seasat-A Scatterometer (SASS), presented chronologically by swath for the period between 7 July 1978 and 10 October 1978. Robert Atlas et al. (1987) produced this product using an objective ambiguity removal scheme to dealias the wind vector data binned at 100 km cells, which were calculated by Frank Wentz. proprietary ATLAS_Veg_Plots_1541_1 Arctic Vegetation Plots ATLAS Project North Slope and Seward Peninsula, AK, 1998-2000 ORNL_CLOUD STAC Catalog 1998-07-01 2000-07-29 -165.07, 64.73, -153.74, 71.32 https://cmr.earthdata.nasa.gov/search/concepts/C2162120307-ORNL_CLOUD.umm_json This data set provides environmental, soil, and vegetation data collected from study sites on the North Slope and Seward Peninsula of Alaska during the Arctic Transition in Land-Atmosphere System (ATLAS) project. ATLAS-1 sites on the North Slope, located in Barrow, Atqasuk, Oumalik, and Ivotuk, were sampled in 1998-1999. ATLAS-2 sites located at Council and Quartz Creek on the Seward Peninsula were sampled in 2000. Specific attributes include dominant vegetation species and cover, biomass, soil chemistry and moisture, leaf area index (LAI), normalized difference vegetation index (NDVI), topography and elevation, and plant cover abundance. proprietary ATMOSL1_3 ATMOS L1 Spectra and Runlogs V3 (ATMOSL1) at GES DISC GES_DISC STAC Catalog 1985-04-30 1994-11-12 -180, -73, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2234896943-GES_DISC.umm_json This is the version 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) Level 1 product containing spectra and runlog (i.e. ) information in a netCDF format. ATMOS is an infrared spectrometer (a Fourier transform interferometer) designed to derive vertical concentrations of various trace gases in the atmosphere, particularly the ozone depleting chlorine and fluorine based molecules. The transmission spectra are ratioed from ATMOS high sun observations, on a scale of 0 to 1. Data files also include time, geolocation and other information. The data were collected during four space shuttle missions: STS-51B/Spacelab 3 (April 30 to May 1, 1985), STS-45/ATLAS-1 (March 25 to April 2, 1992), STS-55/ATLAS-2 (April 8 to 16, 1993), and STS-66/ATLAS-3 (November 3 to 12, 1994). Data are written to separate files grouped by mission (sl3, at1, at2 or at3), and occultation type (sunrise or sunset) and number. proprietary @@ -6170,10 +6170,10 @@ GHISACONUS_001 Global Hyperspectral Imaging Spectral-library of Agricultural cro GIMMS3g_NDVI_Trends_1275_1 Long-Term Arctic Growing Season NDVI Trends from GIMMS 3g, 1982-2012 ORNL_CLOUD STAC Catalog 1982-06-01 2012-08-31 -180, 20, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2784897341-ORNL_CLOUD.umm_json This data set provides normalized difference vegetation index (NDVI) data for the arctic growing season derived primarily with data from Advanced Very High Resolution Radiometer (AVHRR) sensors onboard several NOAA satellites over the years 1982 through 2012. The NDVI data, which show vegetation activity, were averaged annually for the arctic growing season (GS; June, July and August). The products include the annual GS-NDVI values and the results of a cumulative GS-NDVI time series trends analysis. The data are circumpolar in coverage at 8-km resolution and limited to greater than 20 degrees N.These normalized difference vegetation index (NDVI) trends were calculated using the third generation data set from the Global Inventory Modeling and Mapping Studies (GIMMS 3g). GIMMS 3g improves on its predecessor (GIMMS g) in three important ways. First, GIMMS 3g integrates data from NOAA-17 and 18 satellites to lengthen its record. Second, it addresses the spatial discontinuity north of 72 degrees N, by using SeaWiFS, in addition to SPOT VGT, to calibrate between the second and third versions of the AVHRR sensor (AVHRR/2 and AVHRR/3). Finally, the GIMMS 3g algorithm incorporates improved snowmelt detection and is calibrated based on data from the shorter, arctic growing season (May-September) rather than the entire year (January-December). proprietary GISS-CMIP5_1 GISS ModelE2 contributions to the CMIP5 archive NCCS STAC Catalog 0850-01-01 2100-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1542315069-NCCS.umm_json We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980-2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics. proprietary GIS_EastAngliaClimateMonthly_551_1 Global Monthly Climatology for the Twentieth Century (New et al.) ORNL_CLOUD STAC Catalog 1900-01-01 1998-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2780535151-ORNL_CLOUD.umm_json A 0.5 degree lat/lon data set of monthly surface climate over global land areas, excluding Antarctica. Primary variables are interpolated directly from station time-series: precipitation, mean temperature and diurnal temperature range. proprietary -GLAH01_033 GLAS/ICESat L1A Global Altimetry Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153547306-NSIDC_CPRD.umm_json Level-1A altimetry data (GLAH01) include the transmitted and received waveform from the altimeter. Each data granule has an associated browse product. proprietary GLAH01_033 GLAS/ICESat L1A Global Altimetry Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1000000400-NSIDC_ECS.umm_json Level-1A altimetry data (GLAH01) include the transmitted and received waveform from the altimeter. Each data granule has an associated browse product. proprietary -GLAH02_033 GLAS/ICESat L1A Global Atmosphere Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153547430-NSIDC_CPRD.umm_json GLAH02 Level-1A atmospheric data include the normalized relative backscatter for the 532 nm and 1064 nm channels, and low-level instrument corrections such as laser energy (1064 nm and 532 nm), photon coincidence (532 nm), and detector gain correction (1064 nm). Each data granule has an associated browse product. proprietary +GLAH01_033 GLAS/ICESat L1A Global Altimetry Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153547306-NSIDC_CPRD.umm_json Level-1A altimetry data (GLAH01) include the transmitted and received waveform from the altimeter. Each data granule has an associated browse product. proprietary GLAH02_033 GLAS/ICESat L1A Global Atmosphere Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991862-NSIDC_ECS.umm_json GLAH02 Level-1A atmospheric data include the normalized relative backscatter for the 532 nm and 1064 nm channels, and low-level instrument corrections such as laser energy (1064 nm and 532 nm), photon coincidence (532 nm), and detector gain correction (1064 nm). Each data granule has an associated browse product. proprietary +GLAH02_033 GLAS/ICESat L1A Global Atmosphere Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153547430-NSIDC_CPRD.umm_json GLAH02 Level-1A atmospheric data include the normalized relative backscatter for the 532 nm and 1064 nm channels, and low-level instrument corrections such as laser energy (1064 nm and 532 nm), photon coincidence (532 nm), and detector gain correction (1064 nm). Each data granule has an associated browse product. proprietary GLAH03_033 GLAS/ICESat L1A Global Engineering Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991863-NSIDC_ECS.umm_json Level-1A global engineering data (GLAH03) include satellite housekeeping data used to calibrate data values for GLA01 and GLA02. proprietary GLAH03_033 GLAS/ICESat L1A Global Engineering Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153547514-NSIDC_CPRD.umm_json Level-1A global engineering data (GLAH03) include satellite housekeeping data used to calibrate data values for GLA01 and GLA02. proprietary GLAH04_033 GLAS/ICESat L1A Global Laser Pointing Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991864-NSIDC_ECS.umm_json Level-1A global laser pointing data (GLAH04) contain two orbits of attitude data from the spacecraft star tracker, instrument star tracker, gyro, and laser reference system, and other spacecraft attitude data required to calculate precise laser pointing. proprietary @@ -6182,24 +6182,24 @@ GLAH05_034 GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5) V GLAH05_034 GLAS/ICESat L1B Global Waveform-based Range Corrections Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549166-NSIDC_CPRD.umm_json GLAH05 Level-1B waveform parameterization data include output parameters from the waveform characterization procedure and other parameters required to calculate surface slope and relief characteristics. GLAH05 contains parameterizations of both the transmitted and received pulses and other characteristics from which elevation and footprint-scale roughness and slope are calculated. The received pulse characterization uses two implementations of the retracking algorithms: one tuned for ice sheets, called the standard parameterization, used to calculate surface elevation for ice sheets, oceans, and sea ice; and another for land (the alternative parameterization). Each data granule has an associated browse product. proprietary GLAH06_034 GLAS/ICESat L1B Global Elevation Data (HDF5) V034 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1000000445-NSIDC_ECS.umm_json GLAH06 Level-1B Global Elevation is a product that is analogous to the geodetic data records distributed for radar altimetry missions. It contains elevations previously corrected for tides, atmospheric delays, and surface characteristics within the footprint. Elevation is calculated using the ice sheet parameterization. Additional information allows the user to calculate an elevation based on land, sea ice, or ocean algorithms. Each data granule has an associated browse product. proprietary GLAH06_034 GLAS/ICESat L1B Global Elevation Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2033638023-NSIDC_CPRD.umm_json GLAH06 Level-1B Global Elevation is a product that is analogous to the geodetic data records distributed for radar altimetry missions. It contains elevations previously corrected for tides, atmospheric delays, and surface characteristics within the footprint. Elevation is calculated using the ice sheet parameterization. Additional information allows the user to calculate an elevation based on land, sea ice, or ocean algorithms. Each data granule has an associated browse product. proprietary -GLAH07_033 GLAS/ICESat L1B Global Backscatter Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991867-NSIDC_ECS.umm_json GLAH07 Level-1B global backscatter data are provided at full instrument resolution. The product includes full 532 nm (41.1 to -1.0 km) and 1064 nm (20 to -1 km) calibrated attenuated backscatter profiles at 5 times per second, and from 10 to -1 km, at 40 times per second for both channels. Also included are calibration coefficient values and molecular backscatter profiles at once per second. Data granules contain approximately 190 minutes (2 orbits) of data. Each data granule has an associated browse product. proprietary GLAH07_033 GLAS/ICESat L1B Global Backscatter Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549420-NSIDC_CPRD.umm_json GLAH07 Level-1B global backscatter data are provided at full instrument resolution. The product includes full 532 nm (41.1 to -1.0 km) and 1064 nm (20 to -1 km) calibrated attenuated backscatter profiles at 5 times per second, and from 10 to -1 km, at 40 times per second for both channels. Also included are calibration coefficient values and molecular backscatter profiles at once per second. Data granules contain approximately 190 minutes (2 orbits) of data. Each data granule has an associated browse product. proprietary -GLAH08_033 GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1631093696-NSIDC_ECS.umm_json GLAH08 Level-2 planetary boundary layer (PBL) and elevated aerosol layer heights data contains PBL heights, ground detection heights, and top and bottom heights of elevated aerosols from -1.5 km to 20.5 km (4 sec sampling rate) and from 20.5 km to 41 km (20 sec sampling rate). Each data granule has an associated browse product. proprietary +GLAH07_033 GLAS/ICESat L1B Global Backscatter Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991867-NSIDC_ECS.umm_json GLAH07 Level-1B global backscatter data are provided at full instrument resolution. The product includes full 532 nm (41.1 to -1.0 km) and 1064 nm (20 to -1 km) calibrated attenuated backscatter profiles at 5 times per second, and from 10 to -1 km, at 40 times per second for both channels. Also included are calibration coefficient values and molecular backscatter profiles at once per second. Data granules contain approximately 190 minutes (2 orbits) of data. Each data granule has an associated browse product. proprietary GLAH08_033 GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549511-NSIDC_CPRD.umm_json GLAH08 Level-2 planetary boundary layer (PBL) and elevated aerosol layer heights data contains PBL heights, ground detection heights, and top and bottom heights of elevated aerosols from -1.5 km to 20.5 km (4 sec sampling rate) and from 20.5 km to 41 km (20 sec sampling rate). Each data granule has an associated browse product. proprietary -GLAH09_033 GLAS/ICESat L2 Global Cloud Heights for Multi-layer Clouds (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549579-NSIDC_CPRD.umm_json GLAH09 Level-2 cloud heights for multi-layer clouds contain cloud layer top and bottom height data at sampling rates of 4 sec, 1 sec, 5 Hz, and 40 Hz. Each data granule has an associated browse product. proprietary +GLAH08_033 GLAS/ICESat L2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1631093696-NSIDC_ECS.umm_json GLAH08 Level-2 planetary boundary layer (PBL) and elevated aerosol layer heights data contains PBL heights, ground detection heights, and top and bottom heights of elevated aerosols from -1.5 km to 20.5 km (4 sec sampling rate) and from 20.5 km to 41 km (20 sec sampling rate). Each data granule has an associated browse product. proprietary GLAH09_033 GLAS/ICESat L2 Global Cloud Heights for Multi-layer Clouds (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991869-NSIDC_ECS.umm_json GLAH09 Level-2 cloud heights for multi-layer clouds contain cloud layer top and bottom height data at sampling rates of 4 sec, 1 sec, 5 Hz, and 40 Hz. Each data granule has an associated browse product. proprietary -GLAH10_033 GLAS/ICESat L2 Global Aerosol Vertical Structure Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-09-25 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549654-NSIDC_CPRD.umm_json GLAH10 Level-2 aerosol vertical structure data contain the attenuation-corrected cloud and aerosol backscatter and extinction profiles at a 4 sec sampling rate for aerosols and a 1 sec rate for clouds. Each data granule has an associated browse product. proprietary +GLAH09_033 GLAS/ICESat L2 Global Cloud Heights for Multi-layer Clouds (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549579-NSIDC_CPRD.umm_json GLAH09 Level-2 cloud heights for multi-layer clouds contain cloud layer top and bottom height data at sampling rates of 4 sec, 1 sec, 5 Hz, and 40 Hz. Each data granule has an associated browse product. proprietary GLAH10_033 GLAS/ICESat L2 Global Aerosol Vertical Structure Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-09-25 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991870-NSIDC_ECS.umm_json GLAH10 Level-2 aerosol vertical structure data contain the attenuation-corrected cloud and aerosol backscatter and extinction profiles at a 4 sec sampling rate for aerosols and a 1 sec rate for clouds. Each data granule has an associated browse product. proprietary +GLAH10_033 GLAS/ICESat L2 Global Aerosol Vertical Structure Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-09-25 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549654-NSIDC_CPRD.umm_json GLAH10 Level-2 aerosol vertical structure data contain the attenuation-corrected cloud and aerosol backscatter and extinction profiles at a 4 sec sampling rate for aerosols and a 1 sec rate for clouds. Each data granule has an associated browse product. proprietary GLAH11_033 GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549738-NSIDC_CPRD.umm_json GLAH11 Level-2 thin cloud/aerosol optical depths data contain thin cloud and aerosol optical depths. A thin cloud is one that does not completely attenuate the lidar signal return, which generally corresponds to clouds with optical depths less than about 2.0. Each data granule has an associated browse product. proprietary GLAH11_033 GLAS/ICESat L2 Global Thin Cloud/Aerosol Optical Depths Data (HDF5) V033 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C189991871-NSIDC_ECS.umm_json GLAH11 Level-2 thin cloud/aerosol optical depths data contain thin cloud and aerosol optical depths. A thin cloud is one that does not completely attenuate the lidar signal return, which generally corresponds to clouds with optical depths less than about 2.0. Each data granule has an associated browse product. proprietary -GLAH12_034 GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549818-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary GLAH12_034 GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5) V034 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1000000461-NSIDC_ECS.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary -GLAH13_034 GLAS/ICESat L2 Sea Ice Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549910-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary +GLAH12_034 GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549818-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary GLAH13_034 GLAS/ICESat L2 Sea Ice Altimetry Data (HDF5) V034 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1000000464-NSIDC_ECS.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary +GLAH13_034 GLAS/ICESat L2 Sea Ice Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153549910-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary GLAH14_034 GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5) V034 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1000000443-NSIDC_ECS.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary GLAH14_034 GLAS/ICESat L2 Global Land Surface Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153551318-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary -GLAH15_034 GLAS/ICESat L2 Ocean Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153552369-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary GLAH15_034 GLAS/ICESat L2 Ocean Altimetry Data (HDF5) V034 NSIDC_ECS STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C1000000420-NSIDC_ECS.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary +GLAH15_034 GLAS/ICESat L2 Ocean Altimetry Data (HDF5) V034 NSIDC_CPRD STAC Catalog 2003-02-20 2009-10-11 -180, -86, 180, 86 https://cmr.earthdata.nasa.gov/search/concepts/C2153552369-NSIDC_CPRD.umm_json GLAH06 is used in conjunction with GLAH05 to create the Level-2 altimetry products. Level-2 altimetry data provide surface elevations for ice sheets (GLAH12), sea ice (GLAH13), land (GLAH14), and oceans (GLAH15). Data also include the laser footprint geolocation and reflectance, as well as geodetic, instrument, and atmospheric corrections for range measurements. The Level-2 elevation products, are regional products archived at 14 orbits per granule, starting and stopping at the same demarcation (± 50° latitude) as GLAH05 and GLAH06. Each regional product is processed with algorithms specific to that surface type. Surface type masks define which data are written to each of the products. If any data within a given record fall within a specific mask, the entire record is written to the product. Masks can overlap: for example, non-land data in the sea ice region may be written to the sea ice and ocean products. This means that an algorithm may write the same data to more than one Level-2 product. In this case, different algorithms calculate the elevations in their respective products. The surface type masks are versioned and archived at NSIDC, so users can tell which data to expect in each product. Each data granule has an associated browse product. proprietary GLCHMK_001 G-LiHT Canopy Height Model KML V001 LPCLOUD STAC Catalog 2011-06-30 -170, 10, -50, 73 https://cmr.earthdata.nasa.gov/search/concepts/C2763264695-LPCLOUD.umm_json Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT(https://gliht.gsfc.nasa.gov/)) mission utilizes a portable, airborne imaging system that aims to simultaneously map the composition, structure, and function of terrestrial ecosystems. G-LiHT primarily focuses on a broad diversity of forest communities and ecoregions in North America, mapping aerial swaths over the Conterminous United States (CONUS), Alaska, Puerto Rico, and Mexico. The purpose of G-LiHT’s Canopy Height Model Keyhole Markup Language (KML) data product (GLCHMK) is to provide LiDAR-derived maximum canopy height and canopy variability information to aid in the study and analysis of biodiversity and climate change. Scientists at NASA’s Goddard Space Flight Center began collecting data over locally-defined areas in 2011 and that the collection will continue to grow as aerial campaigns are flown and processed. GLCHMK data are processed as a Google Earth overlay KML file at a nominal 1 meter spatial resolution over locally-defined areas. A low resolution browse is also provided showing the canopy height with a color map applied in JPEG format. proprietary GLCHMT_001 G-LiHT Canopy Height Model V001 LPCLOUD STAC Catalog 2011-06-30 -170, 10, -50, 73 https://cmr.earthdata.nasa.gov/search/concepts/C2763264702-LPCLOUD.umm_json Goddard’s LiDAR, Hyperspectral, and Thermal Imager (G-LiHT(https://gliht.gsfc.nasa.gov/)) mission utilizes a portable, airborne imaging system that aims to simultaneously map the composition, structure, and function of terrestrial ecosystems. G-LiHT primarily focuses on a broad diversity of forest communities and ecoregions in North America, mapping aerial swaths over the Conterminous United States (CONUS), Alaska, Puerto Rico, and Mexico. The purpose of G-LiHT’s Canopy Height Model data product (GLCHMT) is to provide LiDAR-derived maximum canopy height and canopy variability information to aid in the study and analysis of biodiversity and climate change. Scientists at NASA’s Goddard Space Flight Center began collecting data over locally-defined areas in 2011 and that the collection will continue to grow as aerial campaigns are flown and processed. GLCHMT data are processed as a raster data product (GeoTIFF) at a nominal 1 meter spatial resolution over locally-defined areas. A low resolution browse is also provided showing the canopy height with a color map applied in JPEG format. proprietary GLDAS_CLM10SUBP_3H_001 GLDAS CLM Land Surface Model L4 3 hourly 1.0 x 1.0 degree Subsetted V001 (GLDAS_CLM10SUBP_3H) at GES DISC GES_DISC STAC Catalog 1979-01-02 2020-03-31 -180, -60, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1279404074-GES_DISC.umm_json With the upgraded Land Surface Models (LSMs) and updated forcing data sets, the GLDAS version 2.1 (GLDAS-2.1) production stream serves as a replacement for GLDAS-001. The entire GLDAS-001 collection from January 1979 through March 2020 was decommissioned on June 30, 2020 and removed from the GES DISC system. However, the replacement for GLDAS-001 monthly and 3-hourly 1.0 x 1.0 degree products from CLM Land Surface Model currently are not available yet. Once their replacement data products become available, the DOIs of GLDAS-001 CLM data products will direct to the GLDAS-2.1 CLM data products. This data set contains a series of land surface parameters simulated from the Common Land Model (CLM) V2.0 model in the Global Land Data Assimilation System (GLDAS). The data are in 1.0 degree resolution and range from January 1979 to present. The temporal resolution is 3-hourly. This simulation was forced by a combination of NOAA/GDAS atmospheric analysis fields, spatially and temporally disaggregated NOAA Climate Prediction Center Merged Analysis of Precipitation (CMAP) fields, and observation based downward shortwave and longwave radiation fields derived using the method of the Air Force Weather Agency's AGRicultural METeorological modeling system (AGRMET). The simulation was initialized on 1 January 1979 using soil moisture and other state fields from a GLDAS/CLM model climatology for that day of the year. WGRIB or another GRIB reader is required to read the files. The data set applies a user-defined parameter table to indicate the contents and parameter number. The GRIBTAB file shows a list of parameters for this data set, along with their Product Definition Section (PDS) IDs and units. For more information, please see the README document. proprietary @@ -6481,14 +6481,14 @@ GPM_3HSLH_DAY_07 GPM DPR Spectral Latent Heating Profiles L3 1 day 0.5 degree x GPM_3HSLH_TRMM_07 GPM PR on TRMM Spectral Latent Heating L3 1 month 0.5 degree x 0.5 degree V07 (GPM_3HSLH_TRMM) at GES DISC GES_DISC STAC Catalog 1997-12-01 2015-04-30 -180, -67, 180, 67 https://cmr.earthdata.nasa.gov/search/concepts/C2264132394-GES_DISC.umm_json This is the new (GPM-formated) TRMM product. It replaces the old TRMM_3H25 Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. Estimating vertical profiles of latent heating released by precipitating cloud systems is one of the key objectives of TRMM, together with accurately measuring the horizontal distribution of tropical rainfall. The method uses TRMM PR information [precipitation-top height (PTH), precipitation rates at the surface and melting level, and rain type] to select heating profiles from lookup tables. Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) utilizing a cloud-resolving model (CRM). The SLH algorithm is severely limited by the inherent sensitivity of the TRMM PR. For latent heating, the quantity required is actually cloud top, but the PR can detect only precipitation-sized particles. Because observed information on precipitation depth is used in addition to precipitation type and intensity, differences between shallow and deep convection are more distinct in the SLH algorithm in comparison with the CSH algorithm. Monthly Spectral Latent Heating produces 0.5 degree x 0.5 degree grid of latent heating profiles from the TRMM PR rain. The grids are in the Planetary Grid 2 structure matching the Dual-frequency PR on the core GPM observatory that covers 67S to 67N degrees of latitudes. Areas beyond the ±40 degrees of latitudes are padded with empty grid cells. proprietary GPM_3HSLH_TRMM_DAY_07 GPM PR on TRMM Spectral Latent Heating Profiles L3 1 Day 0.5x0.5 degree V07 (GPM_3HSLH_TRMM_DAY) at GES DISC GES_DISC STAC Catalog 1997-12-07 2015-04-01 -180, -67, 180, 67 https://cmr.earthdata.nasa.gov/search/concepts/C2264132414-GES_DISC.umm_json This a new (GPM-formated) TRMM product. There is no equivalent in the old TRMM suite of products. Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. Estimating vertical profiles of latent heating released by precipitating cloud systems is one of the key objectives of TRMM, together with accurately measuring the horizontal distribution of tropical rainfall. The method uses TRMM PR information [precipitation-top height (PTH), precipitation rates at the surface and melting level, and rain type] to select heating profiles from lookup tables. Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) utilizing a cloud-resolving model (CRM). The SLH algorithm is severely limited by the inherent sensitivity of the TRMM PR. For latent heating, the quantity required is actually cloud top, but the PR can detect only precipitation-sized particles. Because observed information on precipitation depth is used in addition to precipitation type and intensity, differences between shallow and deep convection are more distinct in the SLH algorithm in comparison with the CSH algorithm. Daily Spectral Latent Heating produces 0.5 degree x 0.5 degree grid of latent heating profiles from the TRMM PR rain. The grids are in the Planetary Grid 2 structure matching the Dual-frequency PR on the core GPM observatory that covers 67S to 67N degrees of latitudes. Areas beyond the ±40 degrees of latitudes are padded with empty grid cells. proprietary GPM_3IMERGDE_06 GPM IMERG Early Precipitation L3 1 day 0.1 degree x 0.1 degree V06 (GPM_3IMERGDE) at GES DISC GES_DISC STAC Catalog 2000-06-01 2024-06-02 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1598621097-GES_DISC.umm_json "The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. Version 06 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 06. This dataset is the GPM Level 3 IMERG *Early* Daily 10 x 10 km (GPM_3IMERGDE) derived from the half-hourly GPM_3IMERGHHE. The derived result represents an early (expedited) estimate of the daily accumulated precipitation. The dataset is produced at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) by simply summing the valid precipitation retrievals for the day in GPM_3IMERGHHE and giving the result in (mm). The latency of the derived Early daily product is a couple of minutes after the last granule of GPM_3IMERGHHE for the UTC data day is received at GES DISC. Since the target latency of GPM_3IMERGHHE is 4 hours, the daily should appear about 4 hours after the closure of the UTC day. For information on the original data (GPM_3IMERGHHE), please see the Documentation (Related URL). In the original IMERG algorithm, the precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2017 version of the Goddard Profiling Algorithm (GPROF2017), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean and tropical land to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF) Lagrangian time interpolation scheme and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the CMORPH-KF morphing (quasi-Lagrangian time interpolation) scheme. The CMORPH-KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. The motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours of the vertically integrated vapor (TQV) provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~3.5 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. Currently, the near-real-time Early and Late half-hourly estimates have no concluding calibration, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitationCal, is the data field of choice for most users. The following describes the derivation of the Daily in more details. The daily accumulation is derived by summing *valid* retrievals in a grid cell for the data day. Since the 0.5-hourly source data are in mm/hr, a factor of 0.5 is applied to the sum. Thus, for every grid cell we have Pdaily = 0.5 * SUM{Pi * 1[Pi valid]}, i=[1,Nf] Pdaily_cnt = SUM{1[Pi valid]} where: Pdaily - Daily accumulation (mm) Pi - 0.5-hourly input, in (mm/hr) Nf - Number of 0.5-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. On occasion, the 0.5-hourly source data have fill values for Pi in a very few grid cells. The total accumulation for such grid cells is still issued, inspite of the likelihood that thus resulting accumulation has a larger uncertainty in representing the ""true"" daily total. These events are easily detectable using ""counts"" variables that contain Pdaily_cnt, whereby users can screen out any grid cells for which Pdaily_cnt less than Nf. There are various ways the accumulated daily error could be estimated from the source 0.5-hourly error. In this release, the daily error provided in the data files is calculated as follows. First, squared 0.5-hourly errors are summed, and then square root of the sum is taken. Similarly to the precipitation, a factor of 0.5 is finally applied: Perr_daily = 0.5 * { SUM[ (Perr_i * 1[Perr_i valid])^2 ] }^0.5 , i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_daily - Magnitude of the daily accumulated error power, (mm) Ncnt_err - The counts for the error variable Thus computed Perr_daily represents the worst case scenario that assumes the error in the 0.5-hourly source data, which is given in mm/hr, is accumulating within the 0.5-hourly period of the source data and then during the day. These values, however, can easily be conveted to root mean square error estimate of the rainfall rate: rms_err = { (Perr_daily/0.5) ^2 / Ncnt_err }^0.5 (mm/hr) This estimate assumes that the error given in the 0.5-hourly files is representative of the error of the rainfall rate (mm/hr) within the 0.5-hour window of the files, and it is random throughout the day. Note, this should be interpreted as the error of the rainfall rate (mm/hr) for the day, not the daily accumulation. " proprietary -GPM_3IMERGDE_07 GPM IMERG Early Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDE) at GES DISC GES_DISC STAC Catalog 2000-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754850-GES_DISC.umm_json " Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) IMERG is a NASA product estimating global surface precipitation rates at a high resolution of 0.1° every half-hour beginning 2000. It is part of the joint NASA-JAXA Global Precipitation Measurement (GPM) mission, using the GPM Core Observatory satellite as the standard to combine precipitation observations from an international constellation of satellites using advanced techniques. IMERG can be used for global-scale applications as well as over regions with sparse or no reliable surface observations. The fine spatial and temporal resolution of IMERG data allows them to be accumulated to the scale of the application for increased skill. IMERG has three Runs with varying latencies in response to a range of application needs: rapid-response applications (Early Run, 4-h latency), same/next-day applications (Late Run, 14-h latency), and post-real-time research (Final Run, 3.5-month latency). While IMERG strives for consistency and accuracy, satellite estimates of precipitation are expected to have lower skill over frozen surfaces, complex terrain, and coastal zones. As well, the changing GPM satellite constellation over time may introduce artifacts that affect studies focusing on multi-year changes. This dataset is the GPM Level 3 IMERG *Early* Daily 10 x 10 km (GPM_3IMERGDE) derived from the half-hourly GPM_3IMERGHHE. The derived result represents an early (expedited) estimate of the daily mean precipitation rate in mm/day. The dataset is produced by first computing the mean precipitation rate in (mm/hour) in every grid cell, and then multiplying the result by 24. This minimizes the possible dry bias in versions before ""07"", in the simple daily totals for cells where less than 48 half-hourly observations are valid for the day. The latter under-sampling is very rare in the combined microwave-infrared (and rain gauge in the final) dataset, variable ""precipitation"", and appears in higher latitudes. Thus, in most cases users of global ""precipitation"" data will not notice any difference. This correction, however, is noticeable in the high-quality microwave retrieval, variable ""MWprecipitation"", where the occurrence of less than 48 valid half-hourly samples per day is very common. The counts of the valid half-hourly samples per day have always been provided as a separate variable, and users of daily data were advised to pay close attention to that variable and use it to calculate the correct precipitation daily rates. Starting with version ""07"", this is done in production to minimize possible misinterpretations of the data. The counts are still provided in the data, but they are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. The latency of the derived Early daily product is a couple of minutes after the last granule of GPM_3IMERGHHE for the UTC data day is received at GES DISC. Since the target latency of GPM_3IMERGHHE is 4 hours, the daily should appear about 4 hours after the closure of the UTC day. For information on the original data (GPM_3IMERGHHE), please see the Documentation (Related URL). The daily mean rate (mm/day) is derived by first computing the mean precipitation rate (mm/hour) in a grid cell for the data day, and then multiplying the result by 24. Thus, for every grid cell we have Pdaily_mean = SUM{Pi * 1[Pi valid]} / Pdaily_cnt * 24, i=[1,Nf] Where: Pdaily_cnt = SUM{1[Pi valid]} Pi - half-hourly input, in (mm/hr) Nf - Number of half-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. Pdaily_cnt are provided in the data files as variables ""precipitation_cnt"" and ""MWprecipitation_cnt"", for correspondingly the microwave-IR-gauge and microwave-only retrievals. They are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. There are various ways the daily error could be estimated from the source half-hourly random error (variable ""randomError""). The daily error provided in the data files is calculated in a fashion similar to the daily mean precipitation rate. First, the mean of the squared half-hourly ""randomError"" for the day is computed, and the resulting (mm^2/hr) is converted to (mm^2/day). Finally, square root is taken to get the result in (mm/day): Perr_daily = { SUM{ (Perr_i)^2 * 1[Perr_i valid] ) } / Ncnt_err * 24}^0.5, i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_i - half-hourly input, ""randomError"", (mm/hr) Perr_daily - Magnitude of the daily error, (mm/day) Ncnt_err - Number of valid half-hour error estimates Again, the sum of squared ""randomError"" can be reconstructed, and other estimates can be derived using the available counts in the Daily files. " proprietary +GPM_3IMERGDE_07 GPM IMERG Early Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDE) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754850-GES_DISC.umm_json " Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) IMERG is a NASA product estimating global surface precipitation rates at a high resolution of 0.1° every half-hour beginning 2000. It is part of the joint NASA-JAXA Global Precipitation Measurement (GPM) mission, using the GPM Core Observatory satellite as the standard to combine precipitation observations from an international constellation of satellites using advanced techniques. IMERG can be used for global-scale applications as well as over regions with sparse or no reliable surface observations. The fine spatial and temporal resolution of IMERG data allows them to be accumulated to the scale of the application for increased skill. IMERG has three Runs with varying latencies in response to a range of application needs: rapid-response applications (Early Run, 4-h latency), same/next-day applications (Late Run, 14-h latency), and post-real-time research (Final Run, 3.5-month latency). While IMERG strives for consistency and accuracy, satellite estimates of precipitation are expected to have lower skill over frozen surfaces, complex terrain, and coastal zones. As well, the changing GPM satellite constellation over time may introduce artifacts that affect studies focusing on multi-year changes. This dataset is the GPM Level 3 IMERG *Early* Daily 10 x 10 km (GPM_3IMERGDE) derived from the half-hourly GPM_3IMERGHHE. The derived result represents an early (expedited) estimate of the daily mean precipitation rate in mm/day. The dataset is produced by first computing the mean precipitation rate in (mm/hour) in every grid cell, and then multiplying the result by 24. This minimizes the possible dry bias in versions before ""07"", in the simple daily totals for cells where less than 48 half-hourly observations are valid for the day. The latter under-sampling is very rare in the combined microwave-infrared (and rain gauge in the final) dataset, variable ""precipitation"", and appears in higher latitudes. Thus, in most cases users of global ""precipitation"" data will not notice any difference. This correction, however, is noticeable in the high-quality microwave retrieval, variable ""MWprecipitation"", where the occurrence of less than 48 valid half-hourly samples per day is very common. The counts of the valid half-hourly samples per day have always been provided as a separate variable, and users of daily data were advised to pay close attention to that variable and use it to calculate the correct precipitation daily rates. Starting with version ""07"", this is done in production to minimize possible misinterpretations of the data. The counts are still provided in the data, but they are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. The latency of the derived Early daily product is a couple of minutes after the last granule of GPM_3IMERGHHE for the UTC data day is received at GES DISC. Since the target latency of GPM_3IMERGHHE is 4 hours, the daily should appear about 4 hours after the closure of the UTC day. For information on the original data (GPM_3IMERGHHE), please see the Documentation (Related URL). The daily mean rate (mm/day) is derived by first computing the mean precipitation rate (mm/hour) in a grid cell for the data day, and then multiplying the result by 24. Thus, for every grid cell we have Pdaily_mean = SUM{Pi * 1[Pi valid]} / Pdaily_cnt * 24, i=[1,Nf] Where: Pdaily_cnt = SUM{1[Pi valid]} Pi - half-hourly input, in (mm/hr) Nf - Number of half-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. Pdaily_cnt are provided in the data files as variables ""precipitation_cnt"" and ""MWprecipitation_cnt"", for correspondingly the microwave-IR-gauge and microwave-only retrievals. They are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. There are various ways the daily error could be estimated from the source half-hourly random error (variable ""randomError""). The daily error provided in the data files is calculated in a fashion similar to the daily mean precipitation rate. First, the mean of the squared half-hourly ""randomError"" for the day is computed, and the resulting (mm^2/hr) is converted to (mm^2/day). Finally, square root is taken to get the result in (mm/day): Perr_daily = { SUM{ (Perr_i)^2 * 1[Perr_i valid] ) } / Ncnt_err * 24}^0.5, i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_i - half-hourly input, ""randomError"", (mm/hr) Perr_daily - Magnitude of the daily error, (mm/day) Ncnt_err - Number of valid half-hour error estimates Again, the sum of squared ""randomError"" can be reconstructed, and other estimates can be derived using the available counts in the Daily files. " proprietary GPM_3IMERGDF_07 GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDF) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754864-GES_DISC.umm_json " Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) IMERG is a NASA product estimating global surface precipitation rates at a high resolution of 0.1° every half-hour beginning 2000. It is part of the joint NASA-JAXA Global Precipitation Measurement (GPM) mission, using the GPM Core Observatory satellite as the standard to combine precipitation observations from an international constellation of satellites using advanced techniques. IMERG can be used for global-scale applications as well as over regions with sparse or no reliable surface observations. The fine spatial and temporal resolution of IMERG data allows them to be accumulated to the scale of the application for increased skill. IMERG has three Runs with varying latencies in response to a range of application needs: rapid-response applications (Early Run, 4-h latency), same/next-day applications (Late Run, 14-h latency), and post-real-time research (Final Run, 3.5-month latency). While IMERG strives for consistency and accuracy, satellite estimates of precipitation are expected to have lower skill over frozen surfaces, complex terrain, and coastal zones. As well, the changing GPM satellite constellation over time may introduce artifacts that affect studies focusing on multi-year changes. This dataset is the GPM Level 3 IMERG *Final* Daily 10 x 10 km (GPM_3IMERGDF) derived from the half-hourly GPM_3IMERGHH. The derived result represents the Final estimate of the daily mean precipitation rate in mm/day. The dataset is produced by first computing the mean precipitation rate in (mm/hour) in every grid cell, and then multiplying the result by 24. This minimizes the possible dry bias in versions before ""07"", in the simple daily totals for cells where less than 48 half-hourly observations are valid for the day. The latter under-sampling is very rare in the combined microwave-infrared and rain gauge dataset, variable ""precipitation"", and appears in higher latitudes. Thus, in most cases users of global ""precipitation"" data will not notice any difference. This correction, however, is noticeable in the high-quality microwave retrieval, variable ""MWprecipitation"", where the occurrence of less than 48 valid half-hourly samples per day is very common. The counts of the valid half-hourly samples per day have always been provided as a separate variable, and users of daily data were advised to pay close attention to that variable and use it to calculate the correct precipitation daily rates. Starting with version ""07"", this is done in production to minimize possible misinterpretations of the data. The counts are still provided in the data, but they are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. The latency of the derived *Final* Daily product depends on the delivery of the IMERG *Final* Half-Hourly product GPM_IMERGHH. Since the latter are delivered in a batch, once per month for the entire month, with up to 4 months latency, so will be the latency for the Final Daily, plus about 24 hours. Thus, e.g. the Dailies for January can be expected to appear no earlier than April 2. The daily mean rate (mm/day) is derived by first computing the mean precipitation rate (mm/hour) in a grid cell for the data day, and then multiplying the result by 24. Thus, for every grid cell we have Pdaily_mean = SUM{Pi * 1[Pi valid]} / Pdaily_cnt * 24, i=[1,Nf] Where: Pdaily_cnt = SUM{1[Pi valid]} Pi - half-hourly input, in (mm/hr) Nf - Number of half-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. Pdaily_cnt are provided in the data files as variables ""precipitation_cnt"" and ""MWprecipitation_cnt"", for correspondingly the microwave-IR-gauge and microwave-only retrievals. They are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. There are various ways the daily error could be estimated from the source half-hourly random error (variable ""randomError""). The daily error provided in the data files is calculated in a fashion similar to the daily mean precipitation rate. First, the mean of the squared half-hourly ""randomError"" for the day is computed, and the resulting (mm^2/hr) is converted to (mm^2/day). Finally, square root is taken to get the result in (mm/day): Perr_daily = { SUM{ (Perr_i)^2 * 1[Perr_i valid] ) } / Ncnt_err * 24}^0.5, i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_i - half-hourly input, ""randomError"", (mm/hr) Perr_daily - Magnitude of the daily error, (mm/day) Ncnt_err - Number of valid half-hour error estimates Again, the sum of squared ""randomError"" can be reconstructed, and other estimates can be derived using the available counts in the Daily files. " proprietary GPM_3IMERGDL_06 GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V06 (GPM_3IMERGDL) at GES DISC GES_DISC STAC Catalog 2000-06-01 2024-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1598621098-GES_DISC.umm_json "The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. Version 06 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 06. This dataset is the GPM Level 3 IMERG Late Daily 10 x 10 km (GPM_3IMERGDL) derived from the half-hourly GPM_3IMERGHHL. The derived result represents a Late expedited estimate of the daily accumulated precipitation. The dataset is produced at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) by simply summing the valid precipitation retrievals for the day in GPM_3IMERGHHL and giving the result in (mm). The latency of the derived late daily product is a couple of minutes after the last granule of GPM_3IMERGHHL for the UTC data day is received at GES DISC. Since the target latency of GPM_3IMERGHHL is 12 hours, the daily should appear about 12 hours after the closure of the UTC day. For information on the original data (GPM_3IMERGHHL), please see the Documentation (Related URL). In the original IMERG algorithm, the precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2017 version of the Goddard Profiling Algorithm (GPROF2017), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean and tropical land to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF) Lagrangian time interpolation scheme and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the CMORPH-KF morphing (quasi-Lagrangian time interpolation) scheme. The CMORPH-KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. The motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours of the vertically integrated vapor (TQV) provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~3.5 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. Currently, the near-real-time Early and Late half-hourly estimates have no concluding calibration, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitationCal, is the data field of choice for most users. The following describes the derivation of the Daily in more details. The daily accumulation is derived by summing *valid* retrievals in a grid cell for the data day. Since the 0.5-hourly source data are in mm/hr, a factor of 0.5 is applied to the sum. Thus, for every grid cell we have Pdaily = 0.5 * SUM{Pi * 1[Pi valid]}, i=[1,Nf] Pdaily_cnt = SUM{1[Pi valid]} where: Pdaily - Daily accumulation (mm) Pi - 0.5-hourly input, in (mm/hr) Nf - Number of 0.5-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. On occasion, the 0.5-hourly source data have fill values for Pi in a very few grid cells. The total accumulation for such grid cells is still issued, inspite of the likelihood that thus resulting accumulation has a larger uncertainty in representing the ""true"" daily total. These events are easily detectable using ""counts"" variables that contain Pdaily_cnt, whereby users can screen out any grid cells for which Pdaily_cnt less than Nf. There are various ways the accumulated daily error could be estimated from the source 0.5-hourly error. In this release, the daily error provided in the data files is calculated as follows. First, squared 0.5-hourly errors are summed, and then square root of the sum is taken. Similarly to the precipitation, a factor of 0.5 is finally applied: Perr_daily = 0.5 * { SUM[ (Perr_i * 1[Perr_i valid])^2 ] }^0.5 , i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_daily - Magnitude of the daily accumulated error power, (mm) Ncnt_err - The counts for the error variable Thus computed Perr_daily represents the worst case scenario that assumes the error in the 0.5-hourly source data, which is given in mm/hr, is accumulating within the 0.5-hourly period of the source data and then during the day. These values, however, can easily be conveted to root mean square error estimate of the rainfall rate: rms_err = { (Perr_daily/0.5) ^2 / Ncnt_err }^0.5 (mm/hr) This estimate assumes that the error given in the 0.5-hourly files is representative of the error of the rainfall rate (mm/hr) within the 0.5-hour window of the files, and it is random throughout the day. Note, this should be interpreted as the error of the rainfall rate (mm/hr) for the day, not the daily accumulation. " proprietary -GPM_3IMERGDL_07 GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDL) at GES DISC GES_DISC STAC Catalog 2000-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754859-GES_DISC.umm_json " Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) IMERG is a NASA product estimating global surface precipitation rates at a high resolution of 0.1° every half-hour beginning 2000. It is part of the joint NASA-JAXA Global Precipitation Measurement (GPM) mission, using the GPM Core Observatory satellite as the standard to combine precipitation observations from an international constellation of satellites using advanced techniques. IMERG can be used for global-scale applications as well as over regions with sparse or no reliable surface observations. The fine spatial and temporal resolution of IMERG data allows them to be accumulated to the scale of the application for increased skill. IMERG has three Runs with varying latencies in response to a range of application needs: rapid-response applications (Early Run, 4-h latency), same/next-day applications (Late Run, 14-h latency), and post-real-time research (Final Run, 3.5-month latency). While IMERG strives for consistency and accuracy, satellite estimates of precipitation are expected to have lower skill over frozen surfaces, complex terrain, and coastal zones. As well, the changing GPM satellite constellation over time may introduce artifacts that affect studies focusing on multi-year changes. This dataset is the GPM Level 3 IMERG Late Daily 10 x 10 km (GPM_3IMERGDL) derived from the half-hourly GPM_3IMERGHHL. The derived result represents a Late expedited estimate of the daily mean precipitation rate in mm/day. The dataset is produced by first computing the mean precipitation rate in (mm/hour) in every grid cell, and then multiplying the result by 24. This minimizes the possible dry bias in versions before ""07"", in the simple daily totals for cells where less than 48 half-hourly observations are valid for the day. The latter under-sampling is very rare in the combined microwave-infrared (and rain gauge in the final) dataset, variable ""precipitation"", and appears in higher latitudes. Thus, in most cases users of global ""precipitation"" data will not notice any difference. This correction, however, is noticeable in the high-quality microwave retrieval, variable ""MWprecipitation"", where the occurrence of less than 48 valid half-hourly samples per day is very common. The counts of the valid half-hourly samples per day have always been provided as a separate variable, and users of daily data were advised to pay close attention to that variable and use it to calculate the correct precipitation daily rates. Starting with version ""07"", this is done in production to minimize possible misinterpretations of the data. The counts are still provided in the data, but they are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. The latency of the derived Late daily product is a couple of minutes after the last granule of GPM_3IMERGHHL for the UTC data day is received at GES DISC. Since the target latency of GPM_3IMERGHHL is 14 hours, the daily should appear no earlier than 14 hours after the closure of the UTC day. For information on the original data (GPM_3IMERGHHL), please see the Documentation (Related URL). The daily mean rate (mm/day) is derived by first computing the mean precipitation rate (mm/hour) in a grid cell for the data day, and then multiplying the result by 24. Thus, for every grid cell we have Pdaily_mean = SUM{Pi * 1[Pi valid]} / Pdaily_cnt * 24, i=[1,Nf] Where: Pdaily_cnt = SUM{1[Pi valid]} Pi - half-hourly input, in (mm/hr) Nf - Number of half-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. Pdaily_cnt are provided in the data files as variables ""precipitation_cnt"" and ""MWprecipitation_cnt"", for correspondingly the microwave-IR-gauge and microwave-only retrievals. They are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. There are various ways the daily error could be estimated from the source half-hourly random error (variable ""randomError""). The daily error provided in the data files is calculated in a fashion similar to the daily mean precipitation rate. First, the mean of the squared half-hourly ""randomError"" for the day is computed, and the resulting (mm^2/hr) is converted to (mm^2/day). Finally, square root is taken to get the result in (mm/day): Perr_daily = { SUM{ (Perr_i)^2 * 1[Perr_i valid] ) } / Ncnt_err * 24}^0.5, i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_i - half-hourly input, ""randomError"", (mm/hr) Perr_daily - Magnitude of the daily error, (mm/day) Ncnt_err - Number of valid half-hour error estimates Again, the sum of squared ""randomError"" can be reconstructed, and other estimates can be derived using the available counts in the Daily files. " proprietary +GPM_3IMERGDL_07 GPM IMERG Late Precipitation L3 1 day 0.1 degree x 0.1 degree V07 (GPM_3IMERGDL) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754859-GES_DISC.umm_json " Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) IMERG is a NASA product estimating global surface precipitation rates at a high resolution of 0.1° every half-hour beginning 2000. It is part of the joint NASA-JAXA Global Precipitation Measurement (GPM) mission, using the GPM Core Observatory satellite as the standard to combine precipitation observations from an international constellation of satellites using advanced techniques. IMERG can be used for global-scale applications as well as over regions with sparse or no reliable surface observations. The fine spatial and temporal resolution of IMERG data allows them to be accumulated to the scale of the application for increased skill. IMERG has three Runs with varying latencies in response to a range of application needs: rapid-response applications (Early Run, 4-h latency), same/next-day applications (Late Run, 14-h latency), and post-real-time research (Final Run, 3.5-month latency). While IMERG strives for consistency and accuracy, satellite estimates of precipitation are expected to have lower skill over frozen surfaces, complex terrain, and coastal zones. As well, the changing GPM satellite constellation over time may introduce artifacts that affect studies focusing on multi-year changes. This dataset is the GPM Level 3 IMERG Late Daily 10 x 10 km (GPM_3IMERGDL) derived from the half-hourly GPM_3IMERGHHL. The derived result represents a Late expedited estimate of the daily mean precipitation rate in mm/day. The dataset is produced by first computing the mean precipitation rate in (mm/hour) in every grid cell, and then multiplying the result by 24. This minimizes the possible dry bias in versions before ""07"", in the simple daily totals for cells where less than 48 half-hourly observations are valid for the day. The latter under-sampling is very rare in the combined microwave-infrared (and rain gauge in the final) dataset, variable ""precipitation"", and appears in higher latitudes. Thus, in most cases users of global ""precipitation"" data will not notice any difference. This correction, however, is noticeable in the high-quality microwave retrieval, variable ""MWprecipitation"", where the occurrence of less than 48 valid half-hourly samples per day is very common. The counts of the valid half-hourly samples per day have always been provided as a separate variable, and users of daily data were advised to pay close attention to that variable and use it to calculate the correct precipitation daily rates. Starting with version ""07"", this is done in production to minimize possible misinterpretations of the data. The counts are still provided in the data, but they are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. The latency of the derived Late daily product is a couple of minutes after the last granule of GPM_3IMERGHHL for the UTC data day is received at GES DISC. Since the target latency of GPM_3IMERGHHL is 14 hours, the daily should appear no earlier than 14 hours after the closure of the UTC day. For information on the original data (GPM_3IMERGHHL), please see the Documentation (Related URL). The daily mean rate (mm/day) is derived by first computing the mean precipitation rate (mm/hour) in a grid cell for the data day, and then multiplying the result by 24. Thus, for every grid cell we have Pdaily_mean = SUM{Pi * 1[Pi valid]} / Pdaily_cnt * 24, i=[1,Nf] Where: Pdaily_cnt = SUM{1[Pi valid]} Pi - half-hourly input, in (mm/hr) Nf - Number of half-hourly files per day, Nf=48 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. Pdaily_cnt are provided in the data files as variables ""precipitation_cnt"" and ""MWprecipitation_cnt"", for correspondingly the microwave-IR-gauge and microwave-only retrievals. They are only given to gauge the significance of the daily rates, and reconstruct the simple totals if someone wishes to do so. There are various ways the daily error could be estimated from the source half-hourly random error (variable ""randomError""). The daily error provided in the data files is calculated in a fashion similar to the daily mean precipitation rate. First, the mean of the squared half-hourly ""randomError"" for the day is computed, and the resulting (mm^2/hr) is converted to (mm^2/day). Finally, square root is taken to get the result in (mm/day): Perr_daily = { SUM{ (Perr_i)^2 * 1[Perr_i valid] ) } / Ncnt_err * 24}^0.5, i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_i - half-hourly input, ""randomError"", (mm/hr) Perr_daily - Magnitude of the daily error, (mm/day) Ncnt_err - Number of valid half-hour error estimates Again, the sum of squared ""randomError"" can be reconstructed, and other estimates can be derived using the available counts in the Daily files. " proprietary GPM_3IMERGHHE_06 GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06 (GPM_3IMERGHHE) at GES DISC GES_DISC STAC Catalog 2000-06-01 2024-06-03 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1598621094-GES_DISC.umm_json "The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. Minor Version 06B is the current version of the data set. Older versions will no longer be available and have been superseded by Version 06B. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2017 version of the Goddard Profiling Algorithm (GPROF2017), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean and tropical land to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF) Lagrangian time interpolation scheme and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the CMORPH-KF morphing (quasi-Lagrangian time interpolation) scheme. The CMORPH-KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. The motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours of the vertically integrated vapor (TQV) provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~3.5 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. Currently, the near-real-time Early and Late half-hourly estimates have no concluding calibration, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitationCal, is the data field of choice for most users. Briefly describing the Early Run, the input precipitation estimates computed from the various satellite passive microwave sensors are intercalibrated to the CORRA product (because it is presumed to be the best snapshot TRMM/GPM estimate after adjustment to the monthly GPCP SG), then ""forward morphed"" and combined with microwave precipitation-calibrated geo-IR fields to provide half-hourly precipitation estimates on a 0.1°x0.1° (roughly 10x10 km) grid over the globe. Precipitation phase is computed using analyses of surface temperature, humidity, and pressure. The current period of record is June 2000 to the present (delayed by about 4 hours). " proprietary -GPM_3IMERGHHE_07 GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHE) at GES DISC GES_DISC STAC Catalog 2000-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723758340-GES_DISC.umm_json "Version 07B is the current version of the IMERG data sets. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2021 version of the Goddard Profiling Algorithm (GPROF2021), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both a Morphing-Kalman Filter (KF) Lagrangian time interpolation scheme based on work by the Climate Prediction Center (CPC) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate (PDIR) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the KF morphing (quasi-Lagrangian time interpolation) scheme. The KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. Motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours within each of the precipitation (PRECTOT), total precipitable liquid water (TQL), and vertically integrated vapor (TQV) data fields provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The vectors from PRECTOT are chosen if available, else from TQL, if available, else from TQV. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. Variable averaging in the KF is accounted for in a routine (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood, or SHARPEN) that compares the local histogram of KF morphed precipitation to the local histogram of forward- and backward-morphed microwave data and the IR. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~4 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. In V07, the near-real-time Early and Late half-hourly estimates have a monthly climatological concluding calibration based on averaging the concluding calibrations computed in the Final, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitation, is the data field of choice for most users. Precipitation phase is a diagnostic variable computed using analyses of surface temperature, humidity, and pressure. " proprietary +GPM_3IMERGHHE_07 GPM IMERG Early Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHE) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723758340-GES_DISC.umm_json "Version 07B is the current version of the IMERG data sets. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2021 version of the Goddard Profiling Algorithm (GPROF2021), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both a Morphing-Kalman Filter (KF) Lagrangian time interpolation scheme based on work by the Climate Prediction Center (CPC) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate (PDIR) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the KF morphing (quasi-Lagrangian time interpolation) scheme. The KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. Motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours within each of the precipitation (PRECTOT), total precipitable liquid water (TQL), and vertically integrated vapor (TQV) data fields provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The vectors from PRECTOT are chosen if available, else from TQL, if available, else from TQV. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. Variable averaging in the KF is accounted for in a routine (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood, or SHARPEN) that compares the local histogram of KF morphed precipitation to the local histogram of forward- and backward-morphed microwave data and the IR. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~4 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. In V07, the near-real-time Early and Late half-hourly estimates have a monthly climatological concluding calibration based on averaging the concluding calibrations computed in the Final, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitation, is the data field of choice for most users. Precipitation phase is a diagnostic variable computed using analyses of surface temperature, humidity, and pressure. " proprietary GPM_3IMERGHHL_06 GPM IMERG Late Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06 (GPM_3IMERGHHL) at GES DISC GES_DISC STAC Catalog 2000-06-01 2024-06-02 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1598621095-GES_DISC.umm_json "The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. Minor Version 06B is the current version of the data set. Older versions will no longer be available and have been superseded by Version 06B. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2017 version of the Goddard Profiling Algorithm (GPROF2017), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean and tropical land to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF) Lagrangian time interpolation scheme and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the CMORPH-KF morphing (quasi-Lagrangian time interpolation) scheme. The CMORPH-KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. The motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours of the vertically integrated vapor (TQV) provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~3.5 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. Currently, the near-real-time Early and Late half-hourly estimates have no concluding calibration, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitationCal, is the data field of choice for most users. Briefly describing the Late Run, the input precipitation estimates computed from the various satellite passive microwave sensors are intercalibrated to the CORRA product (because it is presumed to be the best snapshot TRMM/GPM estimate after adjustment to the monthly GPCP SG), then ""forward/backward morphed"" and combined with microwave precipitation-calibrated geo-IR fields to provide half-hourly precipitation estimates on a 0.1°x0.1° (roughly 10x10 km) grid over the globe. Precipitation phase is computed using analyses of surface temperature, humidity, and pressure. The current period of record is June 2000 to the present (delayed by about 14 hours). " proprietary -GPM_3IMERGHHL_07 GPM IMERG Late Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHL) at GES DISC GES_DISC STAC Catalog 2000-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754845-GES_DISC.umm_json " Version 07B is the current version of the IMERG data sets. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2021 version of the Goddard Profiling Algorithm (GPROF2021), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both a Morphing-Kalman Filter (KF) Lagrangian time interpolation scheme based on work by the Climate Prediction Center (CPC) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate (PDIR) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the KF morphing (quasi-Lagrangian time interpolation) scheme. The KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. Motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours within each of the precipitation (PRECTOT), total precipitable liquid water (TQL), and vertically integrated vapor (TQV) data fields provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The vectors from PRECTOT are chosen if available, else from TQL, if available, else from TQV. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. Variable averaging in the KF is accounted for in a routine (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood, or SHARPEN) that compares the local histogram of KF morphed precipitation to the local histogram of forward- and backward-morphed microwave data and the IR. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~4 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. In V07, the near-real-time Early and Late half-hourly estimates have a monthly climatological concluding calibration based on averaging the concluding calibrations computed in the Final, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitation, is the data field of choice for most users. Precipitation phase is a diagnostic variable computed using analyses of surface temperature, humidity, and pressure. " proprietary +GPM_3IMERGHHL_07 GPM IMERG Late Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHHL) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754845-GES_DISC.umm_json " Version 07B is the current version of the IMERG data sets. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2021 version of the Goddard Profiling Algorithm (GPROF2021), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both a Morphing-Kalman Filter (KF) Lagrangian time interpolation scheme based on work by the Climate Prediction Center (CPC) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate (PDIR) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the KF morphing (quasi-Lagrangian time interpolation) scheme. The KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. Motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours within each of the precipitation (PRECTOT), total precipitable liquid water (TQL), and vertically integrated vapor (TQV) data fields provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The vectors from PRECTOT are chosen if available, else from TQL, if available, else from TQV. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. Variable averaging in the KF is accounted for in a routine (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood, or SHARPEN) that compares the local histogram of KF morphed precipitation to the local histogram of forward- and backward-morphed microwave data and the IR. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~4 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. In V07, the near-real-time Early and Late half-hourly estimates have a monthly climatological concluding calibration based on averaging the concluding calibrations computed in the Final, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitation, is the data field of choice for most users. Precipitation phase is a diagnostic variable computed using analyses of surface temperature, humidity, and pressure. " proprietary GPM_3IMERGHH_07 GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 (GPM_3IMERGHH) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754847-GES_DISC.umm_json "Version 07B is the current version of the IMERG data sets. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2021 version of the Goddard Profiling Algorithm (GPROF2021), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both a Morphing-Kalman Filter (KF) Lagrangian time interpolation scheme based on work by the Climate Prediction Center (CPC) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate (PDIR) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the KF morphing (quasi-Lagrangian time interpolation) scheme. The KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. Motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours within each of the precipitation (PRECTOT), total precipitable liquid water (TQL), and vertically integrated vapor (TQV) data fields provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The vectors from PRECTOT are chosen if available, else from TQL, if available, else from TQV. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. Variable averaging in the KF is accounted for in a routine (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood, or SHARPEN) that compares the local histogram of KF morphed precipitation to the local histogram of forward- and backward-morphed microwave data and the IR. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~4 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. In V07, the near-real-time Early and Late half-hourly estimates have a monthly climatological concluding calibration based on averaging the concluding calibrations computed in the Final, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitation, is the data field of choice for most users. Briefly describing the Final Run, the input precipitation estimates computed from the various satellite passive microwave sensors are intercalibrated to the CORRA product (because it is presumed to be the best snapshot TRMM/GPM estimate after adjustment to the monthly GPCP SG), then ""forward/backward morphed"" and combined with microwave precipitation-calibrated geo-IR fields, and adjusted with seasonal GPCP SG surface precipitation data to provide half-hourly and monthly precipitation estimates on a 0.1°x0.1° (roughly 10x10 km) grid over the globe. Precipitation phase is a diagnostic variable computed using analyses of surface temperature, humidity, and pressure. The current period of record is June 2000 to the present (delayed by about 4 months). " proprietary GPM_3IMERGM_07 GPM IMERG Final Precipitation L3 1 month 0.1 degree x 0.1 degree V07 (GPM_3IMERGM) at GES DISC GES_DISC STAC Catalog 1998-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2723754851-GES_DISC.umm_json "Version 07B is the current version of the IMERG data sets. Older versions will no longer be available and have been superseded by Version 07. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is the unified U.S. algorithm that provides the multi-satellite precipitation product for the U.S. GPM team. The precipitation estimates from the various precipitation-relevant satellite passive microwave (PMW) sensors comprising the GPM constellation are computed using the 2021 version of the Goddard Profiling Algorithm (GPROF2021), then gridded, intercalibrated to the GPM Combined Ku Radar-Radiometer Algorithm (CORRA) product, and merged into half-hourly 0.1°x0.1° (roughly 10x10 km) fields. Note that CORRA is adjusted to the monthly Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) product over high-latitude ocean to correct known biases. The half-hourly intercalibrated merged PMW estimates are then input to both a Morphing-Kalman Filter (KF) Lagrangian time interpolation scheme based on work by the Climate Prediction Center (CPC) and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Dynamic Infrared–Rain Rate (PDIR) re-calibration scheme. In parallel, CPC assembles the zenith-angle-corrected, intercalibrated merged geo-IR fields and forwards them to PPS for input to the PERSIANN-CCS algorithm (supported by an asynchronous re-calibration cycle) which are then input to the KF morphing (quasi-Lagrangian time interpolation) scheme. The KF morphing (supported by an asynchronous KF weights updating cycle) uses the PMW and IR estimates to create half-hourly estimates. Motion vectors for the morphing are computed by maximizing the pattern correlation of successive hours within each of the precipitation (PRECTOT), total precipitable liquid water (TQL), and vertically integrated vapor (TQV) data fields provided by the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and Goddard Earth Observing System model Version 5 (GEOS-5) Forward Processing (FP) for the post-real-time (Final) Run and the near-real-time (Early and Late) Runs, respectively. The vectors from PRECTOT are chosen if available, else from TQL, if available, else from TQV. The KF uses the morphed data as the “forecast” and the IR estimates as the “observations”, with weighting that depends on the time interval(s) away from the microwave overpass time. The IR becomes important after about ±90 minutes away from the overpass time. Variable averaging in the KF is accounted for in a routine (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood, or SHARPEN) that compares the local histogram of KF morphed precipitation to the local histogram of forward- and backward-morphed microwave data and the IR. The IMERG system is run twice in near-real time: ""Early"" multi-satellite product ~4 hr after observation time using only forward morphing and ""Late"" multi-satellite product ~14 hr after observation time, using both forward and backward morphing and once after the monthly gauge analysis is received: ""Final"", satellite-gauge product ~4 months after the observation month, using both forward and backward morphing and including monthly gauge analyses. In V07, the near-real-time Early and Late half-hourly estimates have a monthly climatological concluding calibration based on averaging the concluding calibrations computed in the Final, while in the post-real-time Final Run the multi-satellite half-hourly estimates are adjusted so that they sum to the Final Run monthly satellite-gauge combination. In all cases the output contains multiple fields that provide information on the input data, selected intermediate fields, and estimation quality. In general, the complete calibrated precipitation, precipitation, is the data field of choice for most users. Briefly describing the Final Run, the input precipitation estimates computed from the various satellite passive microwave sensors are intercalibrated to the CORRA product (because it is presumed to be the best snapshot TRMM/GPM estimate after adjustment to the monthly GPCP SG), then ""forward/backward morphed"" and combined with microwave precipitation-calibrated geo-IR fields, and adjusted with seasonal GPCP SG surface precipitation data to provide half-hourly and monthly precipitation estimates on a 0.1°x0.1° (roughly 10x10 km) grid over the globe. Precipitation phase is a diagnostic variable computed using analyses of surface temperature, humidity, and pressure. The current period of record is June 2000 to the present (delayed by about 4 months)." proprietary GPM_3PRD_07 GPM PR on TRMM Precipitation Statistics, at Surface and Fixed Heights 1 day 0.25x0.25 degree V07 (GPM_3PRD) at GES DISC GES_DISC STAC Catalog 1997-12-07 2015-04-30 -180, -67, 180, 67 https://cmr.earthdata.nasa.gov/search/concepts/C2264132424-GES_DISC.umm_json "This a new (GPM-formated) TRMM product. There is no equivalent in the old TRMM suite of products. Version 07 is the current version of the data set. Older versions will no longer be available and have been superseded by Version 07. This is the GPM-like formatted TRMM Precipitation Radar (PR) daily gridded data, first released with the ""V8"" TRMM reprocessing. The daily radar grid data is new for TRMM nomenclature and is introduced for consistency with the GPM Dual-frequency Precipitation Radar (DPR). The closest ancestor was 3A25 which was a monthly radar statistics. This product consists of daily statistics of the PR measurements at (0.25x0.25) degrees horizontal resolution. The objective of the algorithm is to calculate various daily statistics from the level 2 PR output products. Four types of statistics are calculated: 1. Probabilities of occurrence (count values) 2. Means and standard deviations In all cases, the statistics are conditioned on the presence of rain or some other quantity such as the presence of stratiform rain or the presence of a bright-band. For example, to compute the unconditioned mean rain rate, the conditional mean must be multiplied by the probability of rain which, in turn is calculated from the ratio of rain counts to the total number of observations in the box of interest. The grids are in the Planetary Grid 2 structure matching the Dual-frequency PR on the core GPM observatory that covers 67S to 67N degrees of latitudes. Areas beyond the ±40 degrees of latitudes are padded with empty grid cells. " proprietary @@ -11732,8 +11732,8 @@ OMSO2_003 OMI/Aura Sulphur Dioxide (SO2) Total Column 1-orbit L2 Swath 13x24 km OMSO2_CPR_003 OMI/Aura Level 2 Sulphur Dioxide (SO2) Trace Gas Column Data 1-Orbit Subset and Collocated Swath along CloudSat V003 (OMSO2_CPR) at GES DISC GES_DISC STAC Catalog 2006-06-01 2018-03-02 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1236350970-GES_DISC.umm_json "This is a CloudSat-collocated subset of the original product OMSO2, for the purposes of the A-Train mission. The goal of the subset is to select and return OMI data that are within +/-100 km across the CloudSat track. The resultant OMI subset swath is sought to be about 200 km cross-track of CloudSat. Even though collocated with CloudSat, this subset can serve many other A-Train applications. (The shortname for this CloudSat-collocated subset of the original product OMSO2 Product is OMSO2_CPR_V003) This document describes the original OMI SO2 product (OMSO2) produced from global mode UV measurements of the Ozone Monitoring Instrument (OMI). OMI was launched on July 15, 2004 on the EOS Aura satellite, which is in a sun-synchronous ascending polar orbit with 1:45pm local equator crossing time. The data collection started on August 17, 2004 (orbit 482) and continues to this day with only minor data gaps. The minimum SO2 mass detectable by OMI is about two orders of magnitude smaller than the detection threshold of the legacy Total Ozone Mapping Spectrometer (TOMS) SO2 data (1978-2005) [Krueger et al 1995]. This is due to smaller OMI footprint and the use of wavelengths better optimized for separating O3 from SO2. The product file, called a data granule, covers the sunlit portion of the orbit with an approximately 2600 km wide swath containing 60 pixels per viewing line. During normal operations, 14 or 15 granules are produced daily, providing fully contiguous coverage of the globe. Currently, OMSO2 products are not produced when OMI goes into the ""zoom mode"" for one day every 452 orbits (~32 days). For each OMI pixel we provide 4 different estimates of the column density of SO2 in Dobson Units (1DU=2.69x10^16 molecules/cm2) obtained by making different assumptions about the vertical distribution of the SO2. However, it is important to note that in most cases the precise vertical distribution of SO2 is unimportant. The users can use either the SO2 plume height, or the center of mass altitude (CMA) derived from SO2 vertical distribution, to interpolate between the 4 values: 1)Planetary Boundary Layer (PBL) SO2 column (ColumnAmountSO2_PBL), corresponding to CMA of 0.9 km. 2)Lower tropospheric SO2 column (ColumnAmountSO2_TRL), corresponding to CMA of 2.5 km. 3)Middle tropospheric SO2 column, (ColumnAmountSO2_TRM), usually produced by volcanic degassing, corresponding to CMA of 7.5 km, 4)Upper tropospheric and Stratospheric SO2 column (ColumnAmountSO2_STL), usually produced by explosive volcanic eruption, corresponding to CMA of 17 km. The accuracy and precision of the derived SO2 columns vary significantly with the SO2 CMA and column amount, observational geometry, and slant column ozone. OMI becomes more sensitive to SO2 above clouds and snow/ice, and less sensitive to SO2 below clouds. Preliminary error estimates are discussed below (see Data Quality Assessment). OMSO2 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMSO2 data product is about 9 Mbytes." proprietary OMSO2e_003 OMI/Aura Sulfur Dioxide (SO2) Total Column Daily L3 1 day Best Pixel in 0.25 degree x 0.25 degree V3 (OMSO2e) at GES DISC GES_DISC STAC Catalog 2004-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1266136112-GES_DISC.umm_json "The OMI science team produces this Level-3 Aura/OMI Global OMSO2e Data Products (0.25 degree Latitude/Longitude grids). In this Level-3 daily global SO2 data product, each grid contains only one observation of Total Column Density of SO2 in the Planetary Boundary Layer (PBL), based on an improved Principal Component Analysis (PCA) Algorithm. This single observation is the ""best pixel"", selected from all ""good"" L2 pixels of OMSO2 that overlap this grid and have UTC time between UTC times of 00:00:00 and 23:59:59.999. In addition to the SO2 Vertical column value some ancillary parameters, e.g., cloud fraction, terrain height, scene number, solar and satellite viewing angles, row anomaly flags, and quality flags have been also made available corresponding to the best selected SO2 data pixel in each grid. The OMSO2e files are stored in the version 5 EOS Hierarchical Data Format (HDF-EOS5) using the grid model." proprietary OMTO3G_003 OMI/Aura Ozone (O3) Total Column Daily L2 Global Gridded 0.25 degree x 0.25 degree V3 (OMTO3G) at GES DISC GES_DISC STAC Catalog 2004-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1266136114-GES_DISC.umm_json This Level-2G daily global gridded product OMTO3G is based on the pixel level OMI Level-2 Total Ozone Product OMTO3. The OMTO3 product is from the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. The OMTO3G data product is a special Level-2 Global Gridded Product where pixel level data are binned into 0.25x0.25 degree global grids. It contains the data for all L2 scenes that have observation time between UTC times of 00:00:00 and 23:59:59.9999. All data pixels that fall in a grid box are saved Without Averaging. Scientists can apply a data filtering scheme of their choice and create new gridded products. The OMTO3G data product contains almost all parameters that are contained in the OMTO3. For example, in addition to the total column ozone it also contains UV aerosol index, cloud fraction, cloud pressure, terrain height, geolocation, solar and satellite viewing angles, and quality flags. The OMTO3G files are stored in the version 5 EOS Hierarchical Data Format (HDF-EOS5). Each file contains daily data from approximately 15 orbits. The maximum file size for the OMTO3G data product is about 150 Mbytes. proprietary -OMTO3_003 OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT OMINRT STAC Catalog 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.umm_json The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring Instrument (OMI)was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator's (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. This level-2 global total column ozone product (OMTO3)is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI additional hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrieval (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and extensive quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3 and the algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia ( Pawan.K.Bhartia@nasa.gov). OMTO3 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is about 35 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMTO3 data file contains one swath which consists of two groups: Data fields: OMI Total Ozone,Effective Reflectivity (331 - 360 nm), N-value, Cloud Fraction, Cloud Top Pressure, O3 below Cloud, UV Aerosol Index, SO2 index, Wavelength used in the algorithm, many Auxiliary Algorithm Parameter and Quality Flags Geolocation Fields: Latitude, Longitude, Time, Relative Azimuth, Solar Zenith and Azimuth, Viewing Zenith and Azimuth angles, Spacecraft Altitude, Latitude, Longitude, Terrain Height, Ground Pixel Quality Flags.For the full set of Aura data products available from the GES DISC, please see the link http://disc.sci.gsfc.nasa.gov/Aura/ . proprietary OMTO3_003 OMI/Aura Ozone(O3) Total Column 1-Orbit L2 Swath 13x24 km V003 (OMTO3) at GES DISC GES_DISC STAC Catalog 2004-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1239966818-GES_DISC.umm_json The Aura Ozone Monitoring Instrument (OMI) Level-2 Total Column Ozone Data Product OMTO3 (Version 003) is available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) for the public access. OMI provides two Level-2 (OMTO3 and OMDOAO3) total column ozone products at pixel resolution (13 x 24 km at nadir) that are based on two different algorithms. This level-2 global total column ozone product (OMTO3) is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrievals (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3. The algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia. The OMTO3 files are stored in the version 5 EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is approximately 35 MB. proprietary +OMTO3_003 OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT OMINRT STAC Catalog 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.umm_json The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring Instrument (OMI)was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator's (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. This level-2 global total column ozone product (OMTO3)is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI additional hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrieval (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and extensive quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3 and the algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia ( Pawan.K.Bhartia@nasa.gov). OMTO3 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is about 35 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMTO3 data file contains one swath which consists of two groups: Data fields: OMI Total Ozone,Effective Reflectivity (331 - 360 nm), N-value, Cloud Fraction, Cloud Top Pressure, O3 below Cloud, UV Aerosol Index, SO2 index, Wavelength used in the algorithm, many Auxiliary Algorithm Parameter and Quality Flags Geolocation Fields: Latitude, Longitude, Time, Relative Azimuth, Solar Zenith and Azimuth, Viewing Zenith and Azimuth angles, Spacecraft Altitude, Latitude, Longitude, Terrain Height, Ground Pixel Quality Flags.For the full set of Aura data products available from the GES DISC, please see the link http://disc.sci.gsfc.nasa.gov/Aura/ . proprietary OMTO3_CPR_003 OMI/Aura Level 2 Ozone (O3) Total Column 1-Orbit Subset and Collocated Swath along CloudSat track 200-km wide at 13x24 km2 resolution GES_DISC STAC Catalog 2006-06-01 2018-03-02 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1236350982-GES_DISC.umm_json This is a CloudSat-collocated subset of the original product OMTO3, for the purposes of the A-Train mission. The goal of the subset is to select and return OMI data that are within +/-100 km across the CloudSat track. The resultant OMI subset swath is sought to be about 200 km cross-track of CloudSat. This product also contains many ancillary and derived parameters, terrain and geolocation information, solar and satellite viewing angles, and quality flags. Even though collocated with CloudSat, this subset can serve many other A-Train applications. (The shortname for this CloudSat-collocated OMI Level 2 Total Ozone Column subset is OMTO3_CPR_V003) proprietary OMTO3d_003 OMI/Aura TOMS-Like Ozone, Aerosol Index, Cloud Radiance Fraction L3 1 day 1 degree x 1 degree V3 (OMTO3d) at GES DISC GES_DISC STAC Catalog 2004-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1266136070-GES_DISC.umm_json The OMI science team produces this Level-3 daily global TOMS-Like Total Column Ozone gridded product OMTO3d (1 deg Lat/Lon grids). The OMTO3d product is produced by gridding and averaging only good quality level-2 total column ozone orbital swath data (OMTO3, based on the enhanced TOMS version-8 algorithm) on the 1x1 degree global grids. The OMTO3d files are stored in the version 5 EOS Hierarchical Data Format (HDF-EOS5). Each file contains daily data from approximately 15 orbits. The maximum file size for the OMTO3d data product is about 0.65 Mbytes. proprietary OMTO3e_003 OMI/Aura Ozone (O3) Total Column Daily L3 Global 0.25deg Lat/Lon Grid NRT OMINRT STAC Catalog 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1428966163-OMINRT.umm_json The OMI science team produces this Level-3 Aura/OMI Global TOMS-Like Total Column Ozone gridded product OMTO3e (0.25deg Lat/Lon grids). The OMTO3e product selects the best pixel (shortest path length) data from the good quality filtered level-2 total column ozone data (OMTO3) that fall in the 0.25 x 0.25 degree global grids. Each file contains total column ozone, radiative cloud fraction and solar and viewing zenith angles. OMTO3e files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains daily data from approximately 15 orbits. The maximum file size for the OMTO3e data product is about 2.8 Mbytes. (The shortname for this Level-3 TOMS-Like Total Column Ozone gridded product is OMTO3e) . proprietary @@ -12759,6 +12759,7 @@ SNEX21_SSR_1 SnowEx21 Senator Beck Basin and Grand Mesa, CO AVIRIS-NG Surface Sp SNEX21_TS_SP_1 SnowEx21 Time Series Snow Pits V001 NSIDC_ECS STAC Catalog 2020-11-16 2021-05-27 -116.12351, 37.9071, -105.86093, 47.0607 https://cmr.earthdata.nasa.gov/search/concepts/C3046987606-NSIDC_ECS.umm_json The data set is a time-series of snow pit measurements obtained by the SnowEx community during the 2021 field campaign. Between November 2020 and May 2021 data from 247 snow pits were collected at 24 unique sites distributed over 4 states (CO, ID, MT, UT) throughout the Western United States. Five of the unique sites had a single visit to establish baseline conditions, while the remaining 19 sites had 3 or more repeat visits throughout the season, with a median visit count of 11.5. On a weekly interval, a snow pit was dug approximately 1 m away from the previous week’s snow pit. Available measured parameters are: snow depth, snow temperature, snow density, stratigraphy, grain size, manual wetness, liquid water content (LWC), and snow water equivalent (SWE). Also available are photos of the field notes and snow pit sites. proprietary SNEX23_BCEF_TLS_1 SnowEx23 Bonanza Creek Experimental Forest Terrestrial Lidar Scans V001 NSIDC_ECS STAC Catalog 2022-10-22 2023-03-26 -148.325, 64.697, -148.278, 64.714 https://cmr.earthdata.nasa.gov/search/concepts/C2854618795-NSIDC_ECS.umm_json "This data set contains digital terrain models (DTMs) derived from terrestrial lidar scans (TLS) collected as part of the SnowEx 2023 campaign. Data were collected at the Bonanza Creek Experimental Forest near Fairbanks, Alaska in October 2022 (snow-off conditions) and March 2023 (snow-on conditions). The DTMs are provided as Geographic Tagged Image (GeoTIFF) files, where each file corresponds to a unique survey site. Unprocessed point cloud data from which these DTMs were derived are available as the SnowEx23 Bonanza Creek Experimental Forest Terrestrial Lidar Scans Raw, Version 1 (SNEX23_BCEF_TLS_Raw) data set" proprietary SNEX23_BCEF_TLS_Raw_1 SnowEx23 Bonanza Creek Experimental Forest Terrestrial Lidar Scans Raw V001 NSIDC_ECS STAC Catalog 2022-10-22 2023-03-26 -148.325, 64.697, -148.278, 64.714 https://cmr.earthdata.nasa.gov/search/concepts/C2856186714-NSIDC_ECS.umm_json "This data set contains unprocessed point cloud data created from terrestrial lidar scans (TLS) collected during the SnowEx 2023 campaign from the Bonanza Creek Experimental Forest near Fairbanks, Alaska. Data were collected in October 2022 (snow-off) and March 2023 (snow-on). Digital terrain models (DTMs) derived from the raw point cloud data are available as the SnowEx23 Bonanza Creek Experimental Forest Terrestrial Lidar Scans, Version 1 (SNEX23_BCEF_TLS) data set" proprietary +SNEX23_CBand_1 SnowEx23 Mar23 Mobile Tower-Based Dual-Pol C-Band V001 NSIDC_ECS STAC Catalog 2023-03-08 2023-03-15 -147.75, 64.85, -147.48, 65.16 https://cmr.earthdata.nasa.gov/search/concepts/C3313966954-NSIDC_ECS.umm_json This data set contains C-band radar data collected during the NASA SnowEx 2023 Alaska field campaign between 08 March 2023 to 15 March 2023. Data was acquired from two study areas near Fairbanks, Alaska using a multi-polarization radar affixed to sled-mounted tower. The study sites (Caribou Poker Creek watershed and Farmer’s Loop/Creamer’s Field) are boreal forest and wetland environments. Data was also collected from a school adjacent to Farmer’s Loop, to record data from man-made surfaces (i.e., concrete and cultivated grass.) proprietary SNEX23_CRREL_GPR_1 SnowEx23 CRREL Ground Penetrating Radar V001 NSIDC_ECS STAC Catalog 2023-03-08 2023-03-15 -149.598, 68.5257, -149.2186, 68.64 https://cmr.earthdata.nasa.gov/search/concepts/C3215566728-NSIDC_ECS.umm_json "This data set contains the results of 1 GHz ground-penetrating radar surveys conducted at the Upper Kuparuk/Toolik (UKT) site in northern Alaska, USA as part of the NASA SnowEx 2023 field campaign. Data were collected between 08 Mar 2023 to 15 Mar 2023, spatially coinciding with snow pit locations and along transects between snow pits. Data include two-way travel (TWT) time, calculated snow depth, and calculated snow water equivalent (SWE). Raw GPR data are available as SnowEx23 CRREL Ground Penetrating Radar Raw, Version 1." proprietary SNEX23_CRREL_GPR_Raw_1 SnowEx23 CRREL Ground Penetrating Radar Raw V001 NSIDC_ECS STAC Catalog 2023-03-08 2023-03-15 -149.598, 68.5257, -149.2186, 68.64 https://cmr.earthdata.nasa.gov/search/concepts/C3227266712-NSIDC_ECS.umm_json "This data set contains the results of 1 GHz ground-penetrating radar surveys conducted at the Upper Kuparuk/Toolik (UKT) site in northern Alaska, USA as part of the NASA SnowEx 2023 field campaign. Data were collected between 08 Mar 2023 to 15 Mar 2023, spatially coinciding with snow pit locations and along transects between snow pits. Data include georeferenced multichannel ground-penetrating radargrams stored within .nc files. PRocessed GPR data are available as SnowEx23 CRREL Ground Penetrating Radar, Version 1." proprietary SNEX23_CSU_GPR_Raw_1 SnowEx23 Colorado State University Ground Penetrating Radar Raw V001 NSIDC_ECS STAC Catalog 2023-03-07 2023-03-16 -148.3296, 64.6992, -147.4802, 65.1701 https://cmr.earthdata.nasa.gov/search/concepts/C3184787416-NSIDC_ECS.umm_json This data set contains the raw results of 1 GHz ground-penetrating radar surveys conducted as part of the NASA SnowEx23 field campaign in Alaska, USA. Surveys were conducted at three different field sites between 07 March 2023 and 16 March 2023: 1) Farmers Loop/Creamers Field, 2) the Bonanza Creek Experimental Forest, and 3) the Caribou/Poker Creek Research Watershed. proprietary @@ -12966,13 +12967,13 @@ SPL1C_S0_HiRes_QA_002_2 SMAP_L1C_SIGMA_NAUGHT_HIGH_RES_QA_V002 ASF STAC Catalog SPL1C_S0_HiRes_QA_003_3 SMAP_L1C_SIGMA_NAUGHT_HIGH_RES_QA_V003 ASF STAC Catalog 2015-02-12 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1243140611-ASF.umm_json SMAP Level 1C Sigma Naught High Res Data Quality Info Version 3 proprietary SPL2SMAP_003 SMAP L2 Radar/Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture V003 NSIDC_ECS STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1236303829-NSIDC_ECS.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer during 6:00 a.m. descending half-orbit passes. SMAP L-band backscatter and brightness temperatures are used to derive soil moisture data, which are then resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL2SMAP_003 SMAP L2 Radar/Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2830464428-NSIDC_CPRD.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer during 6:00 a.m. descending half-orbit passes. SMAP L-band backscatter and brightness temperatures are used to derive soil moisture data, which are then resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary -SPL2SMAP_S_003 SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -60, 180, 60 https://cmr.earthdata.nasa.gov/search/concepts/C2938663471-NSIDC_CPRD.umm_json This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes and the Sentinel-1A and -1B radar. SMAP L-band brightness temperatures and Copernicus Sentinel-1 C-band backscatter coefficients are used to derive soil moisture data, which are then resampled to an Earth-fixed, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). While the 3 km data product has undergone validation, the 1 km product has not and should be used with caution. proprietary SPL2SMAP_S_003 SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V003 NSIDC_ECS STAC Catalog 2015-03-31 -180, -60, 180, 60 https://cmr.earthdata.nasa.gov/search/concepts/C1931663473-NSIDC_ECS.umm_json This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes and the Sentinel-1A and -1B radar. SMAP L-band brightness temperatures and Copernicus Sentinel-1 C-band backscatter coefficients are used to derive soil moisture data, which are then resampled to an Earth-fixed, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). While the 3 km data product has undergone validation, the 1 km product has not and should be used with caution. proprietary -SPL2SMA_003 SMAP L2 Radar Half-Orbit 3 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2812935277-NSIDC_CPRD.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) active radar during 6:00 a.m. descending half-orbit passes, as well as ancillary data such as surface temperature and vegetation water content. Input backscatter data used to derive soil moisture are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary +SPL2SMAP_S_003 SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -60, 180, 60 https://cmr.earthdata.nasa.gov/search/concepts/C2938663471-NSIDC_CPRD.umm_json This Level-2 (L2) soil moisture product provides estimates of land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes and the Sentinel-1A and -1B radar. SMAP L-band brightness temperatures and Copernicus Sentinel-1 C-band backscatter coefficients are used to derive soil moisture data, which are then resampled to an Earth-fixed, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). While the 3 km data product has undergone validation, the 1 km product has not and should be used with caution. proprietary SPL2SMA_003 SMAP L2 Radar Half-Orbit 3 km EASE-Grid Soil Moisture V003 NSIDC_ECS STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1236303826-NSIDC_ECS.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) active radar during 6:00 a.m. descending half-orbit passes, as well as ancillary data such as surface temperature and vegetation water content. Input backscatter data used to derive soil moisture are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary +SPL2SMA_003 SMAP L2 Radar Half-Orbit 3 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2812935277-NSIDC_CPRD.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) active radar during 6:00 a.m. descending half-orbit passes, as well as ancillary data such as surface temperature and vegetation water content. Input backscatter data used to derive soil moisture are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL2SMP_008 SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V008 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2136471610-NSIDC_ECS.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are resampled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [and made available as the SPL1CTB product], and the gridded brightness temperatures are then used to derive gridded soil moisture data. proprietary -SPL2SMP_009 SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V009 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2776463734-NSIDC_ECS.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are resampled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [and made available as the SPL1CTB product], and the gridded brightness temperatures are then used to derive gridded soil moisture data. proprietary SPL2SMP_009 SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V009 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938663609-NSIDC_CPRD.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are resampled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [and made available as the SPL1CTB product], and the gridded brightness temperatures are then used to derive gridded soil moisture data. proprietary +SPL2SMP_009 SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture V009 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2776463734-NSIDC_ECS.umm_json This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are resampled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) [and made available as the SPL1CTB product], and the gridded brightness temperatures are then used to derive gridded soil moisture data. proprietary SPL2SMP_E_005 SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture V005 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2136471686-NSIDC_ECS.umm_json This enhanced Level-2 (L2) product contains calibrated, geolocated, brightness temperatures acquired by the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP Level-1B (L1B) interpolated antenna temperatures. Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection [available as the SPl1CTB_E product]. As of 2021, the data are also posted to the Northern Hemisphere EASE-Grid 2.0, an azimuthal equal-area projection. These 9-km brightness temperatures are then used to retrieve surface soil moisture posted on the 9-km grid [this SPL2SMP_E product]. proprietary SPL2SMP_E_006 SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture V006 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2938663676-NSIDC_CPRD.umm_json This enhanced Level-2 (L2) product contains calibrated, geolocated, brightness temperatures acquired by the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP Level-1B (L1B) interpolated antenna temperatures. Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection [available as the SPl1CTB_E product]. As of 2021, the data are also posted to the Northern Hemisphere EASE-Grid 2.0, an azimuthal equal-area projection. These 9-km brightness temperatures are then used to retrieve surface soil moisture posted on the 9-km grid [this SPL2SMP_E product]. proprietary SPL2SMP_E_006 SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture V006 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776463773-NSIDC_ECS.umm_json This enhanced Level-2 (L2) product contains calibrated, geolocated, brightness temperatures acquired by the Soil Moisture Active Passive (SMAP) radiometer during 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP Level-1B (L1B) interpolated antenna temperatures. Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection [available as the SPl1CTB_E product]. As of 2021, the data are also posted to the Northern Hemisphere EASE-Grid 2.0, an azimuthal equal-area projection. These 9-km brightness temperatures are then used to retrieve surface soil moisture posted on the 9-km grid [this SPL2SMP_E product]. proprietary @@ -12980,29 +12981,29 @@ SPL2SMP_NRT_107 Near Real-time SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soi SPL3FTA_003 SMAP L3 Radar Northern Hemisphere Daily 3 km EASE-Grid Freeze/Thaw State V003 NSIDC_ECS STAC Catalog 2015-04-13 2015-07-07 -180, 45, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1236303849-NSIDC_ECS.umm_json This Level-3 (L3) product provides a daily composite of Northern Hemisphere landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radar from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band backscatter data are used to derive freeze/thaw data, which are then resampled to an Earth-fixed, Northern Hemisphere azimuthal 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3FTA_003 SMAP L3 Radar Northern Hemisphere Daily 3 km EASE-Grid Freeze/Thaw State V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, 45, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2872766057-NSIDC_CPRD.umm_json This Level-3 (L3) product provides a daily composite of Northern Hemisphere landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radar from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band backscatter data are used to derive freeze/thaw data, which are then resampled to an Earth-fixed, Northern Hemisphere azimuthal 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3FTP_003 SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw State V003 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1931660632-NSIDC_ECS.umm_json This Level-3 (L3) product provides a daily composite of landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are used to derive freeze/thaw state and transition data, which are then resampled to both an Earth-fixed, Northern Hemisphere azimuthal 36 km Equal-Area Scalable Earth Grid (EASE-Grid 2.0), and to an Earth-fixed global 36 km EASE-Grid 2.0. proprietary -SPL3FTP_004 SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw State V004 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2776463838-NSIDC_ECS.umm_json This Level-3 (L3) product provides a daily composite of landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are used to derive freeze/thaw state and transition data, which are then resampled to both an Earth-fixed, Northern Hemisphere azimuthal 36 km Equal-Area Scalable Earth Grid (EASE-Grid 2.0), and to an Earth-fixed global 36 km EASE-Grid 2.0. proprietary SPL3FTP_004 SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw State V004 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938664170-NSIDC_CPRD.umm_json This Level-3 (L3) product provides a daily composite of landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are used to derive freeze/thaw state and transition data, which are then resampled to both an Earth-fixed, Northern Hemisphere azimuthal 36 km Equal-Area Scalable Earth Grid (EASE-Grid 2.0), and to an Earth-fixed global 36 km EASE-Grid 2.0. proprietary +SPL3FTP_004 SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km EASE-Grid Freeze/Thaw State V004 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2776463838-NSIDC_ECS.umm_json This Level-3 (L3) product provides a daily composite of landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. SMAP L-band brightness temperatures are used to derive freeze/thaw state and transition data, which are then resampled to both an Earth-fixed, Northern Hemisphere azimuthal 36 km Equal-Area Scalable Earth Grid (EASE-Grid 2.0), and to an Earth-fixed global 36 km EASE-Grid 2.0. proprietary SPL3FTP_E_003 SMAP Enhanced L3 Radiometer Global and Northern Hemisphere Daily 9 km EASE-Grid Freeze/Thaw State V003 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1931660840-NSIDC_ECS.umm_json This enhanced Level-3 (L3) product provides a daily composite of global and Northern Hemisphere landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP enhanced Level-1C brightness temperatures (SPL1CTB_E). Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures. The data are then posted to two 9 km Earth-fixed, Equal-Area Scalable Earth Grids, Version 2.0 (EASE-Grid 2.0): a global cylindrical and a Northern Hemisphere azimuthal. proprietary SPL3FTP_E_004 SMAP Enhanced L3 Radiometer Global and Northern Hemisphere Daily 9 km EASE-Grid Freeze/Thaw State V004 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938664439-NSIDC_CPRD.umm_json This enhanced Level-3 (L3) product provides a daily composite of global and Northern Hemisphere landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP enhanced Level-1C brightness temperatures (SPL1CTB_E). Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures. The data are then posted to two 9 km Earth-fixed, Equal-Area Scalable Earth Grids, Version 2.0 (EASE-Grid 2.0): a global cylindrical and a Northern Hemisphere azimuthal. proprietary SPL3FTP_E_004 SMAP Enhanced L3 Radiometer Global and Northern Hemisphere Daily 9 km EASE-Grid Freeze/Thaw State V004 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2776463920-NSIDC_ECS.umm_json This enhanced Level-3 (L3) product provides a daily composite of global and Northern Hemisphere landscape freeze/thaw conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer from 6:00 a.m. descending and 6:00 p.m. ascending half-orbit passes. This product is derived from SMAP enhanced Level-1C brightness temperatures (SPL1CTB_E). Backus-Gilbert optimal interpolation techniques are used to extract maximum information from SMAP antenna temperatures and convert them to brightness temperatures. The data are then posted to two 9 km Earth-fixed, Equal-Area Scalable Earth Grids, Version 2.0 (EASE-Grid 2.0): a global cylindrical and a Northern Hemisphere azimuthal. proprietary -SPL3SMAP_003 SMAP L3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2872767144-NSIDC_CPRD.umm_json This Level-3 (L3) soil moisture product provides a daily composite of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3SMAP_003 SMAP L3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture V003 NSIDC_ECS STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1236303847-NSIDC_ECS.umm_json This Level-3 (L3) soil moisture product provides a daily composite of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary -SPL3SMA_003 SMAP L3 Radar Global Daily 3 km EASE-Grid Soil Moisture V003 NSIDC_ECS STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1236303828-NSIDC_ECS.umm_json This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radar as well as a variety of ancillary data sources. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary +SPL3SMAP_003 SMAP L3 Radar/Radiometer Global Daily 9 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2872767144-NSIDC_CPRD.umm_json This Level-3 (L3) soil moisture product provides a daily composite of global land surface conditions retrieved by both the Soil Moisture Active Passive (SMAP) radar and radiometer. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3SMA_003 SMAP L3 Radar Global Daily 3 km EASE-Grid Soil Moisture V003 NSIDC_CPRD STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2872766452-NSIDC_CPRD.umm_json This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radar as well as a variety of ancillary data sources. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary +SPL3SMA_003 SMAP L3 Radar Global Daily 3 km EASE-Grid Soil Moisture V003 NSIDC_ECS STAC Catalog 2015-04-13 2015-07-07 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C1236303828-NSIDC_ECS.umm_json This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radar as well as a variety of ancillary data sources. SMAP L-band soil moisture data are resampled to an Earth-fixed, global, cylindrical 3 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3SMP_008 SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture V008 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2136471705-NSIDC_ECS.umm_json This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer. SMAP L-band soil moisture data are resampled to a global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3SMP_009 SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture V009 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938664585-NSIDC_CPRD.umm_json This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer. SMAP L-band soil moisture data are resampled to a global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3SMP_009 SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture V009 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2776463935-NSIDC_ECS.umm_json This Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) passive microwave radiometer. SMAP L-band soil moisture data are resampled to a global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). proprietary SPL3SMP_E_005 SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid Soil Moisture V005 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2136471727-NSIDC_ECS.umm_json This enhanced Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer. This product is a daily composite of SMAP Level-2 (L2) soil moisture which is derived from SMAP Level-1C (L1C) interpolated brightness temperatures. Backus-Gilbert optimal interpolation techniques are used to extract information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection. As of 2021, the data are also posted to the Northern Hemisphere EASE-Grid 2.0, an azimuthal equal-area projection. proprietary SPL3SMP_E_006 SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid Soil Moisture V006 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2776463943-NSIDC_ECS.umm_json This enhanced Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer. This product is a daily composite of SMAP Level-2 (L2) soil moisture which is derived from SMAP Level-1C (L1C) interpolated brightness temperatures. Backus-Gilbert optimal interpolation techniques are used to extract information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection. As of 2021, the data are also posted to the Northern Hemisphere EASE-Grid 2.0, an azimuthal equal-area projection. proprietary SPL3SMP_E_006 SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 9 km EASE-Grid Soil Moisture V006 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2938664763-NSIDC_CPRD.umm_json This enhanced Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer. This product is a daily composite of SMAP Level-2 (L2) soil moisture which is derived from SMAP Level-1C (L1C) interpolated brightness temperatures. Backus-Gilbert optimal interpolation techniques are used to extract information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection. As of 2021, the data are also posted to the Northern Hemisphere EASE-Grid 2.0, an azimuthal equal-area projection. proprietary -SPL4CMDL_007 SMAP L4 Global Daily 9 km EASE-Grid Carbon Net Ecosystem Exchange V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2534576405-NSIDC_ECS.umm_json The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based terrestrial carbon flux model informed by the following: Soil Moisture Active Passive (SMAP) L-band microwave observations, land cover and vegetation inputs from the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and the Goddard Earth Observing System Model, Version 5 (GEOS-5) land model assimilation system. Parameters are computed using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary SPL4CMDL_007 SMAP L4 Global Daily 9 km EASE-Grid Carbon Net Ecosystem Exchange V007 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938665243-NSIDC_CPRD.umm_json The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based terrestrial carbon flux model informed by the following: Soil Moisture Active Passive (SMAP) L-band microwave observations, land cover and vegetation inputs from the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and the Goddard Earth Observing System Model, Version 5 (GEOS-5) land model assimilation system. Parameters are computed using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary +SPL4CMDL_007 SMAP L4 Global Daily 9 km EASE-Grid Carbon Net Ecosystem Exchange V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2534576405-NSIDC_ECS.umm_json The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based terrestrial carbon flux model informed by the following: Soil Moisture Active Passive (SMAP) L-band microwave observations, land cover and vegetation inputs from the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and the Goddard Earth Observing System Model, Version 5 (GEOS-5) land model assimilation system. Parameters are computed using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary SPL4SMAU_007 SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update V007 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938665508-NSIDC_CPRD.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary SPL4SMAU_007 SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2537927247-NSIDC_ECS.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary -SPL4SMGP_007 SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2531308461-NSIDC_ECS.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary SPL4SMGP_007 SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V007 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938665761-NSIDC_CPRD.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary -SPL4SMLM_007 SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2537926833-NSIDC_ECS.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary +SPL4SMGP_007 SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2531308461-NSIDC_ECS.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary SPL4SMLM_007 SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants V007 NSIDC_CPRD STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2938666109-NSIDC_CPRD.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary +SPL4SMLM_007 SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants V007 NSIDC_ECS STAC Catalog 2015-03-31 -180, -85.044, 180, 85.044 https://cmr.earthdata.nasa.gov/search/concepts/C2537926833-NSIDC_ECS.umm_json SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/EVKPQZ4AFC4D) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/LWJ6TF5SZRG3) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KN96XNPZM4EG). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection. proprietary SPOT-6.and.7.ESA.archive_NA SPOT-6 and 7 ESA archive ESA STAC Catalog 2012-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1965336951-ESA.umm_json The SPOT 6 and 7 ESA archive is a dataset of SPOT 6 and SPOT 7 products that ESA collected over the years. The dataset regularly grows as ESA collects new SPOT 6 and 7 products. SPOT 6 and 7 Primary, Projected and Ortho products are available in the following modes: Panchromatic image at 1.5m resolution Pansharpened colour image at 1.5m resolution Multispectral image in 4 spectral bands at 6m resolution Bundle (1.5m panchromatic image + 6m multispectral image) proprietary SPOT1-5_NA SPOT1-5 ESA archive ESA STAC Catalog 1986-04-01 2015-09-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1532648155-ESA.umm_json The ESA SPOT1-5 collection is a dataset of SPOT-1 to 5 Panchromatic and Multispectral products that ESA collected over the years. The HRV(IR) sensor onboard SPOT 1-4 provides data at 10 m spatial resolution Panchromatic mode (-1 band) and 20 m (Multispectral mode -3 or 4 bands). The HRG sensor on board of SPOT-5 provides spatial resolution of the imagery to < 3 m in the panchromatic band and to 10 m in the multispectral mode (3 bands). The SWIR band imagery remains at 20 m. The dataset mainly focuses on European and African sites but some American, Asian and Greenland areas are also covered. proprietary SPOT4-5_Take5.ESAarchive_NA SPOT 4-5 Take5 ESA archive ESA STAC Catalog 2013-01-31 2015-09-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1965336953-ESA.umm_json At the end of SPOT-4 life, the Take5 experiment was launched and the satellite was moved to a lower orbit to obtain a 5 day repeat cycle, same repetition of Sentinel-2. Thanks to this orbit, from 1st of Feb to 19th of June 2013 a time series of images acquired every 5 days with constant angle and over 45 different sites were observed. In analogy to the previous SPOT-4 Take-5 experiment, also SPOT-5 was placed in a 5 days cycle orbit and 145 selected sites were acquired every 5 days under constant angles from 8th of April to 31st of August 2015. With a resolution of 10 m, the following processing levels are available: Level 1A: reflectance at the top of atmosphere (TOA), not orthorectified products Level 1C: data orthorectified reflectance at the top of atmosphere (TOA) Level 2A: data orthorectified surface reflectance after atmospheric correction (BOA), along with clouds mask and their shadow, and mask of water and snow. proprietary @@ -19173,6 +19174,8 @@ urn:eop:VITO:TERRASCOPE_S2_RHOW_V1_V1 SENTINEL-2 Water Leaving Refectance (RHOW) urn:eop:VITO:TERRASCOPE_S2_SPM_V1_V1 SENTINEL-2 Suspended Particulate Matter (SPM) (tiles) - V1 FEDEO STAC Catalog 2015-07-06 2021-12-31 -180, -84, 180, 84 https://cmr.earthdata.nasa.gov/search/concepts/C2207478521-FEDEO.umm_json The SENTINEL-2 SPM corresponds to the Suspended Particulate Matter water quality products, units are expressed in (mg L-1). proprietary urn:eop:VITO:TERRASCOPE_S2_TOC_V2_V2 SENTINEL-2 Top of Canopy (TOC) Products (tiles) - V2 FEDEO STAC Catalog 2015-07-06 2021-12-31 -180, -84, 180, 84 https://cmr.earthdata.nasa.gov/search/concepts/C2207478523-FEDEO.umm_json L2A atmospheric corrected Top-Of-Canopy (TOC) products, generated using the Sen2COR processing tool. proprietary urn:eop:VITO:TERRASCOPE_S2_TUR_V1_V1 SENTINEL-2 Turbidity (TUR) (tiles) - V1 FEDEO STAC Catalog 2015-07-06 2021-12-31 -180, -84, 180, 84 https://cmr.earthdata.nasa.gov/search/concepts/C2207478522-FEDEO.umm_json TUR corresponds to the Turbidity water quality products, units are expressed in Formazin Nephelometric Unit (FNU). proprietary +urn:eop:VITO:TERRASCOPE_S3_LST_3_S10_V1_V1 Sentinel-3 Level 3 Land Surface Temperature 1 km 10-daily synthesis products - V1 FEDEO STAC Catalog 2020-07-01 2027-12-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C3324212563-FEDEO.umm_json "The Sentinel-3, Level 3 Land Surface Temperature S10 products (S3_LST_3_S10) contain 1 km 10-daily LST composites. TMeasurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km (1° / 112). The LST and LST_unc are provided. LST is derived as the mean value of unflagged S3_LST_3_S1_V1 inputs. LST_unc is propagated from S3_LST_3_S1_V1 inputs"", ""title"": ""Sentinel-3 Level 2 Synergy 1 km VEGETATION-Like 10-daily synthesis TOC reflectance and NDVI - V1." proprietary +urn:eop:VITO:TERRASCOPE_S3_LST_3_S1_V1_V1 Sentinel-3 Level 3 Land Surface Temperature daily synthesis product - V1 FEDEO STAC Catalog 2020-07-01 2025-12-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C3324213481-FEDEO.umm_json The Sentinel-3, Level 3 Land Surface Temperature S1 products (S3_LST_3_S1) contain 1 km daily LST composites. TMeasurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km (1° / 112). The LST and LST_unc are provided, derived from unflagged S3_SL_2_LST inputs at minimum viewing zenith angle. proprietary urn:eop:VITO:TERRASCOPE_S3_SY_2_V10_V1_V1 Sentinel-3 Level 2 Synergy 1 km VEGETATION-Like 10-daily synthesis TOC reflectance and NDVI - V1 FEDEO STAC Catalog 2020-07-01 2025-12-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2655128858-FEDEO.umm_json The Sentinel-3, Level 2 Synergy V10 products (SY_2_V10) contain 1 km VEGETATION-like TOC reflectances and NDVI. The '1 km VEGETATION-like product' label means that measurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km (1° / 112). The NDVI is provided, derived from surface reflectances in B2 and B3. proprietary urn:eop:VITO:TERRASCOPE_S3_SY_2_VG1_V1_V1 Sentinel-3 Level 2 Synergy 1 km VEGETATION-Like daily synthesis TOC reflectance and NDVI - V1 FEDEO STAC Catalog 2020-07-01 2025-12-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2655129037-FEDEO.umm_json The Sentinel-3, Level 2 Synergy VG1 products (SY_2_VG1) contain 1 km VEGETATION-like TOC reflectances and NDVI. The '1 km VEGETATION-like product' label means that measurements are provided on a regular latitude-longitude grid, with an equatorial sampling distance of approximately 1 km (1° / 112). The NDVI is provided, derived from surface reflectances in B2 and B3. proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_CH4_TD_V1_V1 Sentinel-5P Level-3 CH4 Daily Product - V1 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2655128911-FEDEO.umm_json Contains binned Level-2 TROPOMI CH4 retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary @@ -19193,12 +19196,21 @@ urn:eop:VITO:TERRASCOPE_S5P_L3_HCHO_TM_V1_V1 Sentinel-5P Level-3 HCHO Monthly Pr urn:eop:VITO:TERRASCOPE_S5P_L3_HCHO_TM_V2_V2 Sentinel-5P Level-3 HCHO Monthly Product - V2 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2734302047-FEDEO.umm_json The L3 binning algorithm calcualtes a weighted monthly average density based on the daily Level-3 HCHO values. proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_HCHO_TY_V1_V1 Sentinel-5P Level-3 HCHO Yearly Product - V1 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2655129093-FEDEO.umm_json Contains binned Level-2 TROPOMI HCHO retrievals. The L3 binning algorithm calculates a weighted yearly average density based on daily Level-3 HCHO data. proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_HCHO_TY_V2_V2 Sentinel-5P Level-3 HCHO Yearly Product - V2 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2734302051-FEDEO.umm_json Contains binned Level-2 TROPOMI HCHO retrievals. The L3 binning algorithm calculates a weighted yearly average density based on daily Level-3 HCHO data. proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_CAMS_TD_V2_V2 Sentinel-5P Level-3 NO2 from CAMS Daily Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -25, 30, 45, 72 https://cmr.earthdata.nasa.gov/search/concepts/C3324213065-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals using CAMS. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_CAMS_TM_V2_V2 Sentinel-5P Level-3 NO2 from CAMS Monthly Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -25, 30, 45, 72 https://cmr.earthdata.nasa.gov/search/concepts/C3324214385-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals using CAMS. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_CAMS_TY_V2_V2 Sentinel-5P Level-3 NO2 from CAMS Yearly Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -25, 30, 45, 72 https://cmr.earthdata.nasa.gov/search/concepts/C3324213603-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals using CAMS. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_SURFACE_TD_V2_V2 Sentinel-5P Level-3 NO2 Surface Daily Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -5, 42, 9, 54 https://cmr.earthdata.nasa.gov/search/concepts/C3324212624-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 Surface retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_SURFACE_TM_V2_V2 Sentinel-5P Level-3 NO2 Surface Monthly Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -5, 42, 9, 54 https://cmr.earthdata.nasa.gov/search/concepts/C3324214307-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 Surface retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_SURFACE_TY_V2_V2 Sentinel-5P Level-3 NO2 Surface Yearly Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -5, 42, 9, 54 https://cmr.earthdata.nasa.gov/search/concepts/C3324212640-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 Surface retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TD_V1_V1 Sentinel-5P Level-3 NO2 Daily Product - V1 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2207478625-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TD_V2_V2 Sentinel-5P Level-3 NO2 Daily Product - V2 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2734301828-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TM_V1_V1 Sentinel-5P Level-3 NO2 Monthly Product - V1 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2207478562-FEDEO.umm_json The L3 binning algorithm calcualtes a weighted monthly average density based on the daily Level-3 NO2 values. proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TM_V2_V2 Sentinel-5P Level-3 NO2 Monthly Product - V2 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2734301849-FEDEO.umm_json The L3 binning algorithm calcualtes a weighted monthly average density based on the daily Level-3 NO2 values. proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TY_V1_V1 Sentinel-5P Level-3 NO2 Yearly Product - V1 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2207478492-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals. The L3 binning algorithm calculates a weighted yearly average density based on daily Level-3 NO2 data. proprietary urn:eop:VITO:TERRASCOPE_S5P_L3_NO2_TY_V2_V2 Sentinel-5P Level-3 NO2 Yearly Product - V2 FEDEO STAC Catalog 2019-12-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C2734301839-FEDEO.umm_json Contains binned Level-2 TROPOMI NO2 retrievals. The L3 binning algorithm calculates a weighted yearly average density based on daily Level-3 NO2 data. proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_SO2CBR_TD_V2_V2 Sentinel-5P Level-3 SO2CBR Daily Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C3324214371-FEDEO.umm_json Contains binned Level-2 Sulfur Dioxide (SO2) vertical column products using COvariance-Based Retrieval Algorithm (COBRA) retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_SO2CBR_TM_V2_V2 Sentinel-5P Level-3 SO2CBR Monthly Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C3324213174-FEDEO.umm_json Contains binned Level-2 Sulfur Dioxide (SO2) vertical column products using COvariance-Based Retrieval Algorithm (COBRA) retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary +urn:eop:VITO:TERRASCOPE_S5P_L3_SO2CBR_TY_V2_V2 Sentinel-5P Level-3 SO2CBR Yearly Product - V2 FEDEO STAC Catalog 2018-07-01 2025-12-31 -180, -89, 180, 89 https://cmr.earthdata.nasa.gov/search/concepts/C3324214083-FEDEO.umm_json Contains binned Level-2 Sulfur Dioxide (SO2) vertical column products using COvariance-Based Retrieval Algorithm (COBRA) retrievals. The L3 binning algorithm weighs individual pixels with the overlap area of the pixel and the Level-3 grid cell. The weighing and count vectors are used to apply this weighted average consistently, see http://stcorp.github.io/harp/doc/html/libharp_product.html? proprietary urn:ogc:def:EOP:VITO:VGT_P_1 Physical products of SPOT VEGETATION (VGT-P) FEDEO STAC Catalog 1998-04-01 2014-05-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2207472887-FEDEO.umm_json VGT-P (P= physical) products are adapted for scientific applications requiring highly accurate physical measurements. The data is corrected for system errors (error registration of the different channels, calibration of all the detectors along the line-array detectors for each spectral band) and resampled to predefined geographic projections chosen by the user. The pixel brightness count is the ground area's apparent reflectance as seen at the top of atmosphere (TOA). Auxiliary data supplied with the products allow users to process the original reflectance values using their own algorithms. The image products cover all or a part of a VEGETATION segment (data strip over land). The VEGETATION instrument is operational since April 1998, first with VGT1, from March 2003 onwards, with VGT2. More information is available on: https://docs.terrascope.be/#/DataProducts/SPOT-VGT/Level2A/Level2A proprietary urn:ogc:def:EOP:VITO:VGT_S10_1 10 Days Synthesis of SPOT VEGETATION Images (VGT-S10) FEDEO STAC Catalog 1998-04-01 2014-05-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2207472890-FEDEO.umm_json The VGT-S10 are near-global or continental, 10-daily composite images which are synthesised from the 'best available' observations registered in the course of every 'dekad' by the orbiting earth observation system SPOT-VEGETATION. The products provide data from all spectral bands (SWIR, NIR, RED, BLUE), the NDVI and auxiliary data on image acquisition parameters. The VEGETATION system allows operational and near real-time applications, at global, continental and regional scales, in very broad environmentally and socio-economically critical fields. The VEGETATION instrument is operational since April 1998, first with VGT1, from March 2003 onwards, with VGT2. More information is available on: https://docs.terrascope.be/#/DataProducts/SPOT-VGT/Level3/Level3 proprietary urn:ogc:def:EOP:VITO:VGT_S1_1 Global 1 Day Synthesis of SPOT VEGETATION Images (VGT-S1) FEDEO STAC Catalog 1998-04-01 2014-05-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2207472898-FEDEO.umm_json VGT-S1 products (daily synthesis) are composed of the 'Best available' ground reflectance measurements of all segments received during one day for the entire surface of the Earth. This is done for each of the images covering the same geographical area. The areas distant from the equator have more overlapping parts so the choice for the best pixel will be out of more data. These products provide data from all spectral bands, the NDVI and auxiliary data on image acquisition parameters. The VEGETATION instrument is operational since April 1998, first with VGT1, from March 2003 onwards, with VGT2. More information is available on: https://docs.terrascope.be/#/DataProducts/SPOT-VGT/Level3/Level3 proprietary diff --git a/stac_catalogs.json b/stac_catalogs.json index bda3e23..f4fc3f0 100644 --- a/stac_catalogs.json +++ b/stac_catalogs.json @@ -493,6 +493,19 @@ "isApi": true, "accessInfo": null }, + { + "title": "Hong Kong CSDI Trial", + "id": 109, + "url": "https://raw.githubusercontent.com/Anna-leungtn/STAC_CSDI/refs/heads/main/ib1000_stac/catalog.json", + "slug": "hong-kong-csdi-trial", + "summary": "This is a CSDI Catalog trial run create under the LandsD CSDI Platform Section.", + "access": "public", + "created": "2024-12-10T13:19:39.164Z", + "updated": "2024-12-10T13:19:39.164Z", + "isPrivate": false, + "isApi": false, + "accessInfo": null + }, { "title": "IDE Facultad de Ciencia y Tecnolog\u00eda UADER", "id": 53, diff --git a/stac_catalogs.tsv b/stac_catalogs.tsv index 6345767..a0ecfe4 100644 --- a/stac_catalogs.tsv +++ b/stac_catalogs.tsv @@ -37,6 +37,7 @@ GISTDA Flood disaster in Thailand 80 https://disaster-vallaris.gistda.or.th/core Geoportal Server 75 https://gpt.geocloud.com/sentinel/stac geoportal-server This STAC uses the open-source Esri Geoportal Server. Esri Geoportal Server is a generic metadata catalog solution that can be configured to support any XML or JSON based metadata structure. public 2023-07-08T19:32:28.732Z 2023-07-08T19:32:28.732Z False True Google Earth Engine 21 https://earthengine-stac.storage.googleapis.com/catalog/catalog.json google-earth-engine List of all rasters and vectors present in the [Google Earth Engine Catalog](https://developers.google.com/earth-engine/datasets/). public 2020-10-01T19:38:14.208Z 2020-10-01T19:38:14.208Z False False Google Earth Engine (openEO) 6 https://earthengine.openeo.org/v1.0/ google-earth-engine-openeo This is the Google Earth Engine Driver for openEO. Google Earth Engine is a planetary-scale platform for Earth science data & analysis. It is powered by Google's cloud infrastructure and combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities. Google makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface. public 2020-08-20T00:00:00.000Z 2023-02-15T11:00:00.000Z False True +Hong Kong CSDI Trial 109 https://raw.githubusercontent.com/Anna-leungtn/STAC_CSDI/refs/heads/main/ib1000_stac/catalog.json hong-kong-csdi-trial This is a CSDI Catalog trial run create under the LandsD CSDI Platform Section. public 2024-12-10T13:19:39.164Z 2024-12-10T13:19:39.164Z False False IDE Facultad de Ciencia y Tecnología UADER 53 https://raw.githubusercontent.com/IDE-FCyT/IDE-FCyT/main/catalog/stac_catalog.json ide-facultad-de-ciencia-y-tecnologia-uader Lista de raster y vectores presentes en la IDE de la Facultad de Ciencia y Tecnología - UADER public 2022-06-23T15:00:45.539Z 2022-06-23T15:00:45.539Z False False Iconem STAC - 3D Cities, monuments, archeo sites 104 https://app.iconem.com/api/stac iconem-stac-3d-cities-monuments-archeo-sites Iconem 3D STAC Catalog includes datasets for 3d-scans of archeo sites, monuments and entire cities. Includes pointclouds (potree, COPC las/laz), tiled meshes (OGC/Cesium 3D Tiles), orthophotos (COG, geotiff), oriented medias, gaussian splats, stored in a unified CRS. Visible at app.iconem.com protected 2024-08-19T15:55:47.898Z 2024-08-19T15:55:47.898Z True True Please contact Iconem CTO Jonathan Chemla, or access app.iconem.com to see which sites are public, or protected (listed publicly but only available after request) jchemla@iconem.com KAGIS Katalog 106 https://gis.ktn.gv.at/api/stac/v1/ kagis-katalog STAC KAGIS - Land Kärnten (Carinthia, Austria) public 2024-11-07T12:33:17.442Z 2024-11-07T12:33:17.442Z False True