-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathpipeline.py
774 lines (674 loc) · 33.5 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# type: ignore
# pylint: disable=no-value-for-parameter,import-outside-toplevel,no-member
import os
import typing
from typing import Optional
import click
from kfp import compiler, dsl
from kfp.kubernetes import (
CreatePVC,
DeletePVC,
mount_pvc,
use_config_map_as_env,
use_config_map_as_volume,
use_secret_as_env,
use_secret_as_volume,
)
from eval import run_final_eval_op, run_mt_bench_op
from sdg import (
git_clone_op,
sdg_op,
sdg_to_artifact_op,
taxonomy_to_artifact_op,
)
from training import (
data_processing_op,
knowledge_processed_data_to_artifact_op,
pytorch_job_launcher_op,
skills_processed_data_to_artifact_op,
)
from utils import (
ilab_importer_op,
model_to_pvc_op,
pvc_to_model_op,
pvc_to_mt_bench_op,
)
from utils.consts import RHELAI_IMAGE
TEACHER_CONFIG_MAP = "teacher-server"
TEACHER_SECRET = "teacher-server"
JUDGE_CONFIG_MAP = "judge-server"
JUDGE_SECRET = "judge-server"
PIPELINE_FILE_NAME = "pipeline.yaml"
IMPORTER_PIPELINE_FILE_NAME = "importer-pipeline.yaml"
STANDALONE_TEMPLATE_FILE_NAME = "standalone.tpl"
GENERATED_STANDALONE_FILE_NAME = "standalone.py"
DEFAULT_REPO_URL = "https://github.com/instructlab/taxonomy.git"
# Model Serving SSL connection
SDG_CA_CERT_CM_KEY = "ca.crt"
SDG_CA_CERT_ENV_VAR_NAME = "SDG_CA_CERT_PATH"
SDG_CA_CERT_PATH = "/tmp/cert"
JUDGE_CA_CERT_CM_KEY = "ca.crt"
JUDGE_CA_CERT_ENV_VAR_NAME = "JUDGE_CA_CERT_PATH"
JUDGE_CA_CERT_PATH = "/tmp/cert"
@dsl.pipeline(
display_name="InstructLab",
name="instructlab",
description="InstructLab pipeline",
)
def ilab_pipeline(
# SDG phase
sdg_repo_url: str = "https://github.com/instructlab/taxonomy.git",
sdg_repo_branch: Optional[str] = None,
sdg_repo_pr: Optional[
int
] = None, # FIXME: https://issues.redhat.com/browse/RHOAIRFE-467
sdg_base_model: str = "s3://<BUCKET>/<PATH_TO_MODEL>",
sdg_scale_factor: int = 30, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L125
sdg_pipeline: str = "full", # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L122
sdg_max_batch_len: int = 5000, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L334
sdg_sample_size: float = 1.0, # FIXME: Not present in default config. Not configurable upstream at this point, capability added via https://github.com/instructlab/sdg/pull/432
# Training phase
train_nproc_per_node: int = 2, # FIXME: Not present in default config. Arbitrary value chosen to demonstrate multi-node multi-gpu capabilities. Needs proper reference architecture justification.
train_nnodes: int = 2, # FIXME: Not present in default config. Arbitrary value chosen to demonstrate multi-node multi-gpu capabilities. Needs proper reference architecture justification.
train_num_epochs_phase_1: int = 7, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L364
train_num_epochs_phase_2: int = 10, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L377
train_effective_batch_size_phase_1: int = 128, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L357
train_effective_batch_size_phase_2: int = 3840, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L371
train_learning_rate_phase_1: float = 2e-05, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L360
train_learning_rate_phase_2: float = 6e-06, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L374
train_num_warmup_steps_phase_1: int = 1000, # https://github.com/instructlab/training/blob/v0.6.1/src/instructlab/training/main_ds.py#L874
train_num_warmup_steps_phase_2: int = 1000, # https://github.com/instructlab/training/blob/v0.6.1/src/instructlab/training/main_ds.py#L874
train_save_samples: int = 250000, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L393
train_max_batch_len: int = 5000, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L334
train_seed: int = 42, # https://github.com/instructlab/training/blob/v0.6.1/src/instructlab/training/main_ds.py#L901
# MT Bench
mt_bench_max_workers: str = "auto", # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L74
mt_bench_merge_system_user_message: bool = False, # https://github.com/instructlab/instructlab/blob/v0.21.2/src/instructlab/model/evaluate.py#L474
# Final evaluation
final_eval_max_workers: str = "auto", # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L74
final_eval_few_shots: int = 5, # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L56
final_eval_batch_size: str = "auto", # https://github.com/instructlab/instructlab/blob/v0.21.2/tests/testdata/default_config.yaml#L52
final_eval_merge_system_user_message: bool = False, # https://github.com/instructlab/instructlab/blob/v0.21.2/src/instructlab/model/evaluate.py#L474
# Other options
k8s_storage_class_name: str = "standard", # FIXME: https://github.com/kubeflow/pipelines/issues/11396, https://issues.redhat.com/browse/RHOAIRFE-470
):
"""InstructLab pipeline
Args:
sdg_repo_url: SDG parameter. Points to a taxonomy git repository
sdg_repo_branch: SDG parameter. Points to a branch within the taxonomy git repository. If set, has priority over sdg_repo_pr
sdg_repo_pr: SDG parameter. Points to a pull request against the taxonomy git repository
sdg_base_model: SDG parameter. LLM model used to generate the synthetic dataset
sdg_scale_factor: SDG parameter. The total number of instructions to be generated.
sdg_pipeline: SDG parameter. Data generation pipeline to use. Available: 'simple', 'full', or a valid path to a directory of pipeline workflow YAML files. Note that 'full' requires a larger teacher model, Mixtral-8x7b.
sdg_max_batch_len: SDG parameter. Maximum tokens per gpu for each batch that will be handled in a single step.
sdg_sample_size: SDG parameter. Represents the sdg skills recipe sampling size as percentage in decimal form.
train_nproc_per_node: Training parameter. Number of GPUs per each node/worker to use for training.
train_nnodes: Training parameter. Number of nodes/workers to train on.
train_num_epochs_phase_1: Training parameter for in Phase 1. Number of epochs to run training.
train_num_epochs_phase_2: Training parameter for in Phase 2. Number of epochs to run training.
train_effective_batch_size_phase_1: Training parameter for in Phase 1. The number of samples in a batch that the model should see before its parameters are updated.
train_effective_batch_size_phase_2: Training parameter for in Phase 2. The number of samples in a batch that the model should see before its parameters are updated.
train_learning_rate_phase_1: Training parameter for in Phase 1. How fast we optimize the weights during gradient descent. Higher values may lead to unstable learning performance. It's generally recommended to have a low learning rate with a high effective batch size.
train_learning_rate_phase_2: Training parameter for in Phase 2. How fast we optimize the weights during gradient descent. Higher values may lead to unstable learning performance. It's generally recommended to have a low learning rate with a high effective batch size.
train_num_warmup_steps_phase_1: Training parameter for in Phase 1. The number of steps a model should go through before reaching the full learning rate. We start at 0 and linearly climb up to train_learning_rate.
train_num_warmup_steps_phase_2: Training parameter for in Phase 2. The number of steps a model should go through before reaching the full learning rate. We start at 0 and linearly climb up to train_learning_rate.
train_save_samples: Training parameter. Number of samples the model should see before saving a checkpoint.
train_max_batch_len: Training parameter. Maximum tokens per gpu for each batch that will be handled in a single step.
train_seed: Training parameter. Random seed for initializing training.
mt_bench_max_workers: MT Bench parameter. Number of workers to use for evaluation with mt_bench or mt_bench_branch. Must be a positive integer or 'auto'.
mt_bench_merge_system_user_message: MT Bench parameter. Boolean indicating whether to merge system and user messages (required for Mistral based judges)
final_eval_max_workers: Final model evaluation parameter for MT Bench Branch. Number of workers to use for evaluation with mt_bench or mt_bench_branch. Must be a positive integer or 'auto'.
final_eval_few_shots: Final model evaluation parameter for MMLU. Number of question-answer pairs provided in the context preceding the question used for evaluation.
final_eval_batch_size: Final model evaluation parameter for MMLU. Batch size for evaluation. Valid values are a positive integer or 'auto' to select the largest batch size that will fit in memory.
final_eval_merge_system_user_message: Final model evaluation parameter for MT Bench Branch. Boolean indicating whether to merge system and user messages (required for Mistral based judges)
k8s_storage_class_name: A Kubernetes StorageClass name for persistent volumes. Selected StorageClass must support RWX PersistentVolumes.
"""
# SDG stage
sdg_input_pvc_task = CreatePVC(
pvc_name_suffix="-sdg",
access_modes=["ReadWriteMany"],
size="10Gi",
storage_class_name=k8s_storage_class_name,
)
git_clone_task = git_clone_op(
repo_branch=sdg_repo_branch,
repo_pr=sdg_repo_pr if sdg_repo_pr and sdg_repo_pr > 0 else None,
repo_url=sdg_repo_url,
)
mount_pvc(
task=git_clone_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
git_clone_task.set_caching_options(False)
sdg_task = sdg_op(
num_instructions_to_generate=sdg_scale_factor,
pipeline=sdg_pipeline,
repo_branch=sdg_repo_branch,
repo_pr=sdg_repo_pr,
sdg_sampling_size=sdg_sample_size,
)
sdg_task.set_env_variable("HOME", "/tmp")
sdg_task.set_env_variable("HF_HOME", "/tmp")
use_config_map_as_env(
sdg_task, TEACHER_CONFIG_MAP, dict(endpoint="endpoint", model="model")
)
use_secret_as_env(sdg_task, TEACHER_SECRET, {"api_key": "api_key"})
use_config_map_as_volume(sdg_task, TEACHER_CONFIG_MAP, mount_path=SDG_CA_CERT_PATH)
sdg_task.set_env_variable(
SDG_CA_CERT_ENV_VAR_NAME, os.path.join(SDG_CA_CERT_PATH, SDG_CA_CERT_CM_KEY)
)
sdg_task.after(git_clone_task)
mount_pvc(
task=sdg_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
sdg_task.set_caching_options(False)
# Upload "sdg" and "taxonomy" artifacts to S3 without blocking the rest of the workflow
taxonomy_to_artifact_task = taxonomy_to_artifact_op()
taxonomy_to_artifact_task.after(git_clone_task, sdg_task)
mount_pvc(
task=taxonomy_to_artifact_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
sdg_to_artifact_task = sdg_to_artifact_op()
sdg_to_artifact_task.after(git_clone_task, sdg_task)
mount_pvc(
task=sdg_to_artifact_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
# uncomment if updating image with same tag
# set_image_pull_policy(sdg_task, "Always")
# Training stage
model_source_s3_task = dsl.importer(
artifact_uri=sdg_base_model, artifact_class=dsl.Model
)
model_pvc_task = CreatePVC(
pvc_name_suffix="-model-cache",
access_modes=["ReadWriteMany"],
size="100Gi",
storage_class_name=k8s_storage_class_name,
)
model_to_pvc_task = model_to_pvc_op(model=model_source_s3_task.output)
model_to_pvc_task.set_caching_options(False)
mount_pvc(
task=model_to_pvc_task, pvc_name=model_pvc_task.output, mount_path="/model"
)
# Data processing
data_processing_task = data_processing_op(max_batch_len=sdg_max_batch_len)
mount_pvc(
task=data_processing_task,
pvc_name=model_pvc_task.output,
mount_path="/model",
)
mount_pvc(
task=data_processing_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
data_processing_task.after(model_to_pvc_task, sdg_task)
data_processing_task.set_caching_options(False)
data_processing_task.set_env_variable("XDG_CACHE_HOME", "/tmp")
# Upload "skills_processed_data" and "knowledge_processed_data" artifacts to S3 without blocking the rest of the workflow
skills_processed_data_to_artifact_task = skills_processed_data_to_artifact_op()
skills_processed_data_to_artifact_task.after(data_processing_task)
mount_pvc(
task=skills_processed_data_to_artifact_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
skills_processed_data_to_artifact_task.set_caching_options(False)
knowledge_processed_data_to_artifact_task = (
knowledge_processed_data_to_artifact_op()
)
knowledge_processed_data_to_artifact_task.after(data_processing_task)
mount_pvc(
task=knowledge_processed_data_to_artifact_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/data",
)
knowledge_processed_data_to_artifact_task.set_caching_options(False)
output_pvc_task = CreatePVC(
pvc_name_suffix="-output",
access_modes=["ReadWriteMany"],
size="100Gi",
storage_class_name=k8s_storage_class_name,
)
# Training 1
# Using pvc_create_task.output as PyTorchJob name since dsl.PIPELINE_* global variables do not template/work in KFP v2
# https://github.com/kubeflow/pipelines/issues/10453
training_phase_1 = pytorch_job_launcher_op(
model_pvc_name=model_pvc_task.output,
input_pvc_name=sdg_input_pvc_task.output,
name_suffix=sdg_input_pvc_task.output,
output_pvc_name=output_pvc_task.output,
phase_num=1,
base_image=RHELAI_IMAGE,
nproc_per_node=train_nproc_per_node,
nnodes=train_nnodes,
num_epochs=train_num_epochs_phase_1,
effective_batch_size=train_effective_batch_size_phase_1,
learning_rate=train_learning_rate_phase_1,
num_warmup_steps=train_num_warmup_steps_phase_1,
save_samples=train_save_samples,
max_batch_len=train_max_batch_len,
seed=train_seed,
)
training_phase_1.after(data_processing_task, model_to_pvc_task)
training_phase_1.set_caching_options(False)
#### Train 2
training_phase_2 = pytorch_job_launcher_op(
model_pvc_name=model_pvc_task.output,
input_pvc_name=sdg_input_pvc_task.output,
name_suffix=sdg_input_pvc_task.output,
output_pvc_name=output_pvc_task.output,
phase_num=2,
base_image=RHELAI_IMAGE,
nproc_per_node=train_nproc_per_node,
nnodes=train_nnodes,
num_epochs=train_num_epochs_phase_2,
effective_batch_size=train_effective_batch_size_phase_2,
learning_rate=train_learning_rate_phase_2,
num_warmup_steps=train_num_warmup_steps_phase_2,
save_samples=train_save_samples,
max_batch_len=train_max_batch_len,
seed=train_seed,
)
training_phase_2.set_caching_options(False)
training_phase_2.after(training_phase_1)
mount_pvc(
task=training_phase_2,
pvc_name=output_pvc_task.output,
mount_path="/output",
)
# MT_Bench Evaluation of models
run_mt_bench_task = run_mt_bench_op(
models_folder="/output/phase_2/model/hf_format",
max_workers=mt_bench_max_workers,
merge_system_user_message=mt_bench_merge_system_user_message,
)
mount_pvc(
task=run_mt_bench_task,
pvc_name=output_pvc_task.output,
mount_path="/output",
)
run_mt_bench_task.set_env_variable("HOME", "/tmp")
run_mt_bench_task.set_env_variable("HF_HOME", "/tmp")
run_mt_bench_task.set_accelerator_type("nvidia.com/gpu")
run_mt_bench_task.set_accelerator_limit(1)
run_mt_bench_task.set_caching_options(False)
run_mt_bench_task.after(training_phase_2)
use_config_map_as_env(
run_mt_bench_task,
JUDGE_CONFIG_MAP,
dict(endpoint="JUDGE_ENDPOINT", model="JUDGE_NAME"),
)
use_secret_as_env(run_mt_bench_task, JUDGE_SECRET, {"api_key": "JUDGE_API_KEY"})
use_config_map_as_volume(
run_mt_bench_task, JUDGE_CONFIG_MAP, mount_path=JUDGE_CA_CERT_PATH
)
run_mt_bench_task.set_env_variable(
JUDGE_CA_CERT_ENV_VAR_NAME,
os.path.join(JUDGE_CA_CERT_PATH, JUDGE_CA_CERT_CM_KEY),
)
# uncomment if updating image with same tag
# set_image_pull_policy(run_mt_bench_task, "Always")
final_eval_task = run_final_eval_op(
candidate_model="/output/phase_2/model/hf_format/candidate_model",
# TODO: DO we need both candidate_branch and base_branch
base_branch=sdg_repo_branch,
candidate_branch=sdg_repo_branch,
base_model_dir="/model/",
max_workers=final_eval_max_workers,
merge_system_user_message=final_eval_merge_system_user_message,
few_shots=final_eval_few_shots,
batch_size=final_eval_batch_size,
)
mount_pvc(
task=final_eval_task, pvc_name=output_pvc_task.output, mount_path="/output"
)
mount_pvc(
task=final_eval_task,
pvc_name=sdg_input_pvc_task.output,
mount_path="/input",
)
mount_pvc(
task=final_eval_task,
pvc_name=model_pvc_task.output,
mount_path="/model",
)
use_config_map_as_env(
final_eval_task,
JUDGE_CONFIG_MAP,
dict(endpoint="JUDGE_ENDPOINT", model="JUDGE_NAME"),
)
final_eval_task.set_env_variable("HOME", "/tmp")
final_eval_task.set_env_variable("HF_HOME", "/tmp")
# uncomment if updating image with same tag
# set_image_pull_policy(final_eval_task, "Always")
use_secret_as_env(final_eval_task, JUDGE_SECRET, {"api_key": "JUDGE_API_KEY"})
use_config_map_as_volume(
final_eval_task, JUDGE_CONFIG_MAP, mount_path=JUDGE_CA_CERT_PATH
)
final_eval_task.set_env_variable(
JUDGE_CA_CERT_ENV_VAR_NAME,
os.path.join(JUDGE_CA_CERT_PATH, JUDGE_CA_CERT_CM_KEY),
)
final_eval_task.after(run_mt_bench_task)
final_eval_task.set_accelerator_type("nvidia.com/gpu")
final_eval_task.set_accelerator_limit(1)
final_eval_task.set_caching_options(False)
output_model_task = pvc_to_model_op(
pvc_path="/output/phase_2/model/hf_format/candidate_model",
)
output_model_task.after(run_mt_bench_task)
output_model_task.set_caching_options(False)
mount_pvc(
task=output_model_task,
pvc_name=output_pvc_task.output,
mount_path="/output",
)
output_mt_bench_task = pvc_to_mt_bench_op(
pvc_path="/output/mt_bench_data.json",
)
output_mt_bench_task.after(run_mt_bench_task)
output_mt_bench_task.set_caching_options(False)
mount_pvc(
task=output_mt_bench_task,
pvc_name=output_pvc_task.output,
mount_path="/output",
)
output_pvc_delete_task = DeletePVC(pvc_name=output_pvc_task.output)
output_pvc_delete_task.after(
output_model_task, output_mt_bench_task, final_eval_task
)
sdg_pvc_delete_task = DeletePVC(pvc_name=sdg_input_pvc_task.output)
sdg_pvc_delete_task.after(final_eval_task)
model_pvc_delete_task = DeletePVC(pvc_name=model_pvc_task.output)
model_pvc_delete_task.after(final_eval_task)
return
@dsl.pipeline(
display_name="InstructLab - base model importer",
name="instructlab-base-importer",
description="Helper pipeline to the InstructLab pipeline which allows users to seed/import a new base model",
)
def import_base_model_pipeline(
# hf_token_secret: str = "", # FIXME: Don't use hardcoded secret/configmap names once fixed upstream: https://github.com/kubeflow/pipelines/issues/11395
# oci_pull_secret: str = "", # FIXME: Don't use hardcoded secret/configmap names once fixed upstream: https://github.com/kubeflow/pipelines/issues/11395
repository: str = "docker://registry.redhat.io/rhelai1/granite-7b-starter",
release: str = "latest",
):
"""InstructLab - base model importer.
Args:
repository: Hugging Face or OCI repository of the model to download. OCI repository must have a docker:// prefix
release: The revision of the model to download - e.g. a branch, tag, or commit hash for Hugging Face repositories and tag or commit hash for OCI repositories.
hf_token_secret: Name of existing Kubernetes secret which contains HF_TOKEN value for Hugging Face repositories. Mandatory for all repositories besides those which belong to the "instructlab" organization.
oci_pull_secret: Name of existing Kubernetes secret of .dockerconfigjson type for OCI repository authentication.
"""
importer_task = ilab_importer_op(repository=repository, release=release)
# FIXME: Don't use hardcoded secret/configmap names once fixed upstream: https://github.com/kubeflow/pipelines/issues/11395
# FIXME: Make env variables optional once implemented upstream: https://github.com/kubeflow/pipelines/issues/11401
# This pipeline is currently unusable outside of ocp-beta-test.nerc.mghpcc.org cluster, `ilab` namespace due to the hardcoded names...
use_secret_as_env(importer_task, "hugging-face-token", dict(HF_TOKEN="HF_TOKEN"))
importer_task.set_env_variable(
"REGISTRY_AUTH_FILE", "/mnt/containers/.dockerconfigjson"
)
use_secret_as_volume(
importer_task, "7033380-ilab-pull-secret", mount_path="/mnt/containers"
)
importer_task.set_env_variable("XDG_CACHE_HOME", "/tmp")
importer_task.set_env_variable("XDG_CONFIG_HOME", "/tmp")
importer_task.set_env_variable("XDG_DATA_HOME", "/tmp")
@click.group(invoke_without_command=True)
@click.pass_context
def cli(ctx: click.Context):
if ctx.invoked_subcommand is None:
generate_pipeline()
def generate_pipeline():
pipelines = [
(ilab_pipeline, PIPELINE_FILE_NAME),
(import_base_model_pipeline, IMPORTER_PIPELINE_FILE_NAME),
]
with click.progressbar(
pipelines,
label="Generating pipeline",
item_show_func=lambda p: p[1] if p is not None else "",
) as bar:
for pipeline_func, pipeline_file in bar:
compiler.Compiler().compile(pipeline_func, pipeline_file)
@cli.command(name="run")
@click.option("-e", "--experiment", help="Set KFP experiment name.")
@click.option("-r", "--run", "run_name", help="Set KFP run name.")
@click.option(
"-p",
"--param",
help="Override default parameters in KEY=VALUE format. Default parameters are suitable for dev cluster - the MOC cluster, `ilab` namespace.",
multiple=True,
)
def run(experiment, run_name, param):
"""
Run the pipeline immediately against current kubernetes context (cluster and namespace).
Command sets expected dev-cluster friendly default values when submitting.
"""
from utils.kfp_client import get_kfp_client
client = get_kfp_client()
dev_arguments = {
"k8s_storage_class_name": "nfs-csi",
"sdg_base_model": "s3://ilab-pipeline-b1d4c2b1-ab00-4e7f-b985-697bda3df385/instructlab-base-importer/648f36d0-e3f0-43b8-8adb-530576beb675/ilab-importer-op/model/granite-7b-starter",
"train_num_epochs_phase_1": 2,
"train_num_epochs_phase_2": 2,
"train_num_warmup_steps_phase_1": 100,
"train_num_warmup_steps_phase_2": 100,
"train_learning_rate_phase_1": 1e-4,
"train_learning_rate_phase_2": 1e-4,
"sdg_sample_size": 0.0002,
}
try:
parsed_params = dict(item.split("=") for item in param)
except ValueError as e:
raise click.BadOptionUsage(
"param", "Parameters are required to be passed in KEY=VALUE format"
) from e
arguments = {**dev_arguments, **parsed_params}
client.create_run_from_pipeline_func(
pipeline_func=ilab_pipeline,
experiment_name=experiment,
run_name=run_name,
arguments=arguments,
)
@cli.command(name="gen-standalone")
def gen_standalone():
"""
Generates a standalone script that mimics the behavior of the pipeline.
This function should be used when Kubeflow Pipelines are not available. It will generate a
script that replicates the pipeline's functionality.
Example usage: ''' $ python pipeline.py gen-standalone '''
"""
from os import chmod, path
import yaml
from jinja2 import Template
from jinja2.exceptions import TemplateSyntaxError
click.echo("Generating pipeline YAML file...")
try:
generate_pipeline()
except ValueError as e:
click.echo(f"Error: {e}", err=True)
raise click.exceptions.Exit(1)
# Load the YAML pipeline file which contains multiple documents
with open(PIPELINE_FILE_NAME, "r", encoding="utf-8") as file:
try:
documents = list(yaml.safe_load_all(file))
except ValueError as e:
click.echo(f"Error: {e}", err=True)
raise click.exceptions.Exit(1)
# The list of executor names to extract details from to generate the standalone script
executors = {
"exec-data-processing-op": 'data_processing_op(max_seq_len={MAX_SEQ_LEN}, max_batch_len={MAX_BATCH_LEN}, sdg_path="{DATA_PVC_SDG_PATH}", model_path="{DATA_PVC_MODEL_PATH}", skills_path="{PREPROCESSED_DATA_SKILLS_PATH}", knowledge_path="{PREPROCESSED_DATA_KNOWLEDGE_PATH}")',
"exec-sdg-op": 'sdg_op(num_instructions_to_generate={num_instructions_to_generate}, pipeline="{sdg_pipeline}", repo_branch="{exec_git_clone_op_repo_branch or ""}", repo_pr={exec_git_clone_op_repo_pr or 0}, taxonomy_path="{TAXONOMY_DATA_PATH}", sdg_path="{DATA_PVC_SDG_PATH}", sdg_sampling_size={sdg_sampling_size})',
"exec-git-clone-op": {},
"exec-run-mt-bench-op": 'run_mt_bench_op(best_score_file="{MT_BENCH_SCORES_PATH}",output_path="{MT_BENCH_OUTPUT_PATH}",models_folder="{CANDIDATE_MODEL_PATH_PREFIX}", max_workers="{MAX_WORKERS}", merge_system_user_message={MERGE_SYSTEM_USER_MESSAGE})',
"exec-run-final-eval-op": 'run_final_eval_op(mmlu_branch_output="{MMLU_BRANCH_SCORES_PATH}", mt_bench_branch_output="{MT_BENCH_BRANCH_SCORES_PATH}", candidate_model="{CANDIDATE_MODEL_PATH}", taxonomy_path="{TAXONOMY_PATH}", sdg_path="{DATA_PVC_SDG_PATH}", base_branch="", candidate_branch="", base_model_dir="{DATA_PVC_MODEL_PATH}", max_workers="{MAX_WORKERS}", merge_system_user_message={MERGE_SYSTEM_USER_MESSAGE}, few_shots={FEW_SHOTS}, batch_size="{BATCH_SIZE}")',
}
details = {}
for executor_name, executor_input_param in executors.items():
try:
executor_name_camelize = executor_name.replace("-", "_")
# replace "-" with "_" in executor_name to match the key in the details dictionary
executor_details = get_executor_details(documents, executor_name)
if executor_details is not None:
details[executor_name_camelize + "_image"] = executor_details["image"]
details[executor_name_camelize + "_command"] = (
change_dsl_function_to_normal_function(executor_details["command"])
)
if executor_name == "exec-git-clone-op":
details[executor_name_camelize + "_args"] = remove_template_markers(
executor_details["args"],
executor_name_camelize,
executor_input_param,
)
else:
details[executor_name_camelize + "_args"] = executor_input_param
except ValueError as e:
click.echo(f"Error: {e}", err=True)
raise click.exceptions.Exit(1)
# Open the template file
try:
standalone_template_path = path.join(
"standalone", STANDALONE_TEMPLATE_FILE_NAME
)
with open(standalone_template_path, "r", encoding="utf-8") as template_file:
template_content = template_file.read()
except FileNotFoundError as e:
click.echo(
f"Error: The template file '{standalone_template_path}' was not found.",
err=True,
)
raise click.exceptions.Exit(1) from e
except IOError as e:
click.echo(
f"Error: An I/O error occurred while reading '{standalone_template_path}': {e}",
err=True,
)
raise click.exceptions.Exit(1)
# Prepare the Jinja2 Template
try:
template = Template(template_content)
except TemplateSyntaxError as e:
click.echo(
f"Error: The template file '{standalone_template_path}' contains a syntax error: {e}",
err=True,
)
raise click.exceptions.Exit(1)
# Render the template with dynamic values
rendered_code = template.render(details)
# Write the rendered code to a new Python file
standalone_script_path = path.join("standalone", GENERATED_STANDALONE_FILE_NAME)
with open(standalone_script_path, "w", encoding="utf-8") as output_file:
output_file.write(rendered_code)
# Make the rendered file executable
chmod(standalone_script_path, 0o755)
click.echo(f"Successfully generated '{standalone_script_path}' script.")
def get_executor_details(
documents: typing.List[typing.Dict[str, typing.Any]], executor_name: str
) -> dict | None:
"""
Extracts the command, args, and image of a given executor container from the provided YAML
documents.
Args:
documents (List[Dict[str, Any]]): List of YAML documents loaded as dictionaries.
executor_name (str): The name of the executor to search for.
Returns:
dict: A dictionary containing the 'command', 'args', and 'image' of the executor container
if found, otherwise raise en error.
"""
spec = "deploymentSpec"
deployment_spec_found = False
for doc in documents:
deployment_spec = doc.get(spec)
if not deployment_spec:
continue
else:
deployment_spec_found = True
for executors_value in deployment_spec.values():
for executor, executor_value in executors_value.items():
if executor == executor_name:
container = executor_value.get("container", {})
if not all(
key in container for key in ("command", "args", "image")
):
raise ValueError(
f"Executor '{executor_name}' does not have the required "
"'command', 'args', or 'image' fields."
)
return {
"command": container["command"],
"args": container["args"],
"image": container["image"],
}
print(f"Executor '{executor_name}' not found in the provided {spec} document.")
return None
if not deployment_spec_found:
raise ValueError(
"The provided documents do not contain a 'deploymentSpec' key."
)
def remove_template_markers(
rendered_code: list, executor_name: str, executor_input_param: str
) -> list:
"""
Removes the Jinja2 template markers from each element of the rendered code list.
Args:
rendered_code (list): The list of rendered code elements containing Jinja2 template markers.
Returns:
list: The list of rendered code elements with Jinja2 template markers removed.
Examples with an executor name of 'exec':
Input: ["{{$.inputs.parameters['repo_name']}}", "{{$.inputs.parameters['model']}}"]
Output: ["{exec_repo_name}", "{exec_model}"]
"""
import json
import re
pattern = r"\{\{\$\.inputs\.parameters\['([^']+)'\]\}\}"
rendered_code = [
re.sub(pattern, r"{%s_\1}" % executor_name, element)
for element in rendered_code
]
# TODO: find a better approach
# Only useful for git_clone_op at the moment
# additionally remove {{$.outputs.artifacts[\'taxonomy\'].path}}
pattern = r"\{\{\$\.outputs\.artifacts\['([^']+)'\]\.path\}\}"
rendered_code = [
re.sub(pattern, r"{TAXONOMY_PATH}", element) for element in rendered_code
]
# Replace '{{$}}' with input_param
pattern = r"\{\{\$\}\}"
rendered_code = [
re.sub(pattern, json.dumps(executor_input_param), element)
for element in rendered_code
]
return rendered_code
def change_dsl_function_to_normal_function(rendered_code: list):
replacements = {
"dsl.Input[dsl.Dataset]": "str",
"dsl.Input[dsl.Model]": "str",
"dsl.Input[dsl.Artifact]": "str",
"dsl.Output[dsl.Dataset]": "str",
"dsl.Output[dsl.Model]": "str",
"Output[Artifact]": "str",
"Input[Dataset]": "str",
"import kfp": "",
"from kfp import dsl": "",
"from kfp.dsl import *": "",
}
import re
# Regular expression to match ".path" but not "os.path"
path_pattern = re.compile(r"(?<!os)\.path")
def remove_path_not_os_path(line):
return path_pattern.sub("", line)
rendered_code = [remove_path_not_os_path(line) for line in rendered_code]
for old, new in replacements.items():
rendered_code = [line.replace(old, new) for line in rendered_code]
return rendered_code[-1].strip()
if __name__ == "__main__":
cli()