-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathlecture_affine.html
551 lines (479 loc) · 103 KB
/
lecture_affine.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
<!DOCTYPE html><html><head>
<title>lecture_affine</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link rel="stylesheet" href="file:////Users/samuel/.vscode/extensions/shd101wyy.markdown-preview-enhanced-0.5.0/node_modules/@shd101wyy/mume/dependencies/katex/katex.min.css">
<style>
/**
* prism.js Github theme based on GitHub's theme.
* @author Sam Clarke
*/
code[class*="language-"],
pre[class*="language-"] {
color: #333;
background: none;
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
text-align: left;
white-space: pre;
word-spacing: normal;
word-break: normal;
word-wrap: normal;
line-height: 1.4;
-moz-tab-size: 8;
-o-tab-size: 8;
tab-size: 8;
-webkit-hyphens: none;
-moz-hyphens: none;
-ms-hyphens: none;
hyphens: none;
}
/* Code blocks */
pre[class*="language-"] {
padding: .8em;
overflow: auto;
/* border: 1px solid #ddd; */
border-radius: 3px;
/* background: #fff; */
background: #f5f5f5;
}
/* Inline code */
:not(pre) > code[class*="language-"] {
padding: .1em;
border-radius: .3em;
white-space: normal;
background: #f5f5f5;
}
.token.comment,
.token.blockquote {
color: #969896;
}
.token.cdata {
color: #183691;
}
.token.doctype,
.token.punctuation,
.token.variable,
.token.macro.property {
color: #333;
}
.token.operator,
.token.important,
.token.keyword,
.token.rule,
.token.builtin {
color: #a71d5d;
}
.token.string,
.token.url,
.token.regex,
.token.attr-value {
color: #183691;
}
.token.property,
.token.number,
.token.boolean,
.token.entity,
.token.atrule,
.token.constant,
.token.symbol,
.token.command,
.token.code {
color: #0086b3;
}
.token.tag,
.token.selector,
.token.prolog {
color: #63a35c;
}
.token.function,
.token.namespace,
.token.pseudo-element,
.token.class,
.token.class-name,
.token.pseudo-class,
.token.id,
.token.url-reference .token.variable,
.token.attr-name {
color: #795da3;
}
.token.entity {
cursor: help;
}
.token.title,
.token.title .token.punctuation {
font-weight: bold;
color: #1d3e81;
}
.token.list {
color: #ed6a43;
}
.token.inserted {
background-color: #eaffea;
color: #55a532;
}
.token.deleted {
background-color: #ffecec;
color: #bd2c00;
}
.token.bold {
font-weight: bold;
}
.token.italic {
font-style: italic;
}
/* JSON */
.language-json .token.property {
color: #183691;
}
.language-markup .token.tag .token.punctuation {
color: #333;
}
/* CSS */
code.language-css,
.language-css .token.function {
color: #0086b3;
}
/* YAML */
.language-yaml .token.atrule {
color: #63a35c;
}
code.language-yaml {
color: #183691;
}
/* Ruby */
.language-ruby .token.function {
color: #333;
}
/* Markdown */
.language-markdown .token.url {
color: #795da3;
}
/* Makefile */
.language-makefile .token.symbol {
color: #795da3;
}
.language-makefile .token.variable {
color: #183691;
}
.language-makefile .token.builtin {
color: #0086b3;
}
/* Bash */
.language-bash .token.keyword {
color: #0086b3;
}
/* highlight */
pre[data-line] {
position: relative;
padding: 1em 0 1em 3em;
}
pre[data-line] .line-highlight-wrapper {
position: absolute;
top: 0;
left: 0;
background-color: transparent;
display: block;
width: 100%;
}
pre[data-line] .line-highlight {
position: absolute;
left: 0;
right: 0;
padding: inherit 0;
margin-top: 1em;
background: hsla(24, 20%, 50%,.08);
background: linear-gradient(to right, hsla(24, 20%, 50%,.1) 70%, hsla(24, 20%, 50%,0));
pointer-events: none;
line-height: inherit;
white-space: pre;
}
pre[data-line] .line-highlight:before,
pre[data-line] .line-highlight[data-end]:after {
content: attr(data-start);
position: absolute;
top: .4em;
left: .6em;
min-width: 1em;
padding: 0 .5em;
background-color: hsla(24, 20%, 50%,.4);
color: hsl(24, 20%, 95%);
font: bold 65%/1.5 sans-serif;
text-align: center;
vertical-align: .3em;
border-radius: 999px;
text-shadow: none;
box-shadow: 0 1px white;
}
pre[data-line] .line-highlight[data-end]:after {
content: attr(data-end);
top: auto;
bottom: .4em;
}html body{font-family:"Helvetica Neue",Helvetica,"Segoe UI",Arial,freesans,sans-serif;font-size:16px;line-height:1.6;color:#333;background-color:#fff;overflow:initial;box-sizing:border-box;word-wrap:break-word}html body>:first-child{margin-top:0}html body h1,html body h2,html body h3,html body h4,html body h5,html body h6{line-height:1.2;margin-top:1em;margin-bottom:16px;color:#000}html body h1{font-size:2.25em;font-weight:300;padding-bottom:.3em}html body h2{font-size:1.75em;font-weight:400;padding-bottom:.3em}html body h3{font-size:1.5em;font-weight:500}html body h4{font-size:1.25em;font-weight:600}html body h5{font-size:1.1em;font-weight:600}html body h6{font-size:1em;font-weight:600}html body h1,html body h2,html body h3,html body h4,html body h5{font-weight:600}html body h5{font-size:1em}html body h6{color:#5c5c5c}html body strong{color:#000}html body del{color:#5c5c5c}html body a:not([href]){color:inherit;text-decoration:none}html body a{color:#08c;text-decoration:none}html body a:hover{color:#00a3f5;text-decoration:none}html body img{max-width:100%}html body>p{margin-top:0;margin-bottom:16px;word-wrap:break-word}html body>ul,html body>ol{margin-bottom:16px}html body ul,html body ol{padding-left:2em}html body ul.no-list,html body ol.no-list{padding:0;list-style-type:none}html body ul ul,html body ul ol,html body ol ol,html body ol ul{margin-top:0;margin-bottom:0}html body li{margin-bottom:0}html body li.task-list-item{list-style:none}html body li>p{margin-top:0;margin-bottom:0}html body .task-list-item-checkbox{margin:0 .2em .25em -1.8em;vertical-align:middle}html body .task-list-item-checkbox:hover{cursor:pointer}html body blockquote{margin:16px 0;font-size:inherit;padding:0 15px;color:#5c5c5c;border-left:4px solid #d6d6d6}html body blockquote>:first-child{margin-top:0}html body blockquote>:last-child{margin-bottom:0}html body hr{height:4px;margin:32px 0;background-color:#d6d6d6;border:0 none}html body table{margin:10px 0 15px 0;border-collapse:collapse;border-spacing:0;display:block;width:100%;overflow:auto;word-break:normal;word-break:keep-all}html body table th{font-weight:bold;color:#000}html body table td,html body table th{border:1px solid #d6d6d6;padding:6px 13px}html body dl{padding:0}html body dl dt{padding:0;margin-top:16px;font-size:1em;font-style:italic;font-weight:bold}html body dl dd{padding:0 16px;margin-bottom:16px}html body code{font-family:Menlo,Monaco,Consolas,'Courier New',monospace;font-size:.85em !important;color:#000;background-color:#f0f0f0;border-radius:3px;padding:.2em 0}html body code::before,html body code::after{letter-spacing:-0.2em;content:"\00a0"}html body pre>code{padding:0;margin:0;font-size:.85em !important;word-break:normal;white-space:pre;background:transparent;border:0}html body .highlight{margin-bottom:16px}html body .highlight pre,html body pre{padding:1em;overflow:auto;font-size:.85em !important;line-height:1.45;border:#d6d6d6;border-radius:3px}html body .highlight pre{margin-bottom:0;word-break:normal}html body pre code,html body pre tt{display:inline;max-width:initial;padding:0;margin:0;overflow:initial;line-height:inherit;word-wrap:normal;background-color:transparent;border:0}html body pre code:before,html body pre tt:before,html body pre code:after,html body pre tt:after{content:normal}html body p,html body blockquote,html body ul,html body ol,html body dl,html body pre{margin-top:0;margin-bottom:16px}html body kbd{color:#000;border:1px solid #d6d6d6;border-bottom:2px solid #c7c7c7;padding:2px 4px;background-color:#f0f0f0;border-radius:3px}@media print{html body{background-color:#fff}html body h1,html body h2,html body h3,html body h4,html body h5,html body h6{color:#000;page-break-after:avoid}html body blockquote{color:#5c5c5c}html body pre{page-break-inside:avoid}html body table{display:table}html body img{display:block;max-width:100%;max-height:100%}html body pre,html body code{word-wrap:break-word;white-space:pre}}.markdown-preview{width:100%;height:100%;box-sizing:border-box}.markdown-preview .pagebreak,.markdown-preview .newpage{page-break-before:always}.markdown-preview pre.line-numbers{position:relative;padding-left:3.8em;counter-reset:linenumber}.markdown-preview pre.line-numbers>code{position:relative}.markdown-preview pre.line-numbers .line-numbers-rows{position:absolute;pointer-events:none;top:1em;font-size:100%;left:0;width:3em;letter-spacing:-1px;border-right:1px solid #999;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none}.markdown-preview pre.line-numbers .line-numbers-rows>span{pointer-events:none;display:block;counter-increment:linenumber}.markdown-preview pre.line-numbers .line-numbers-rows>span:before{content:counter(linenumber);color:#999;display:block;padding-right:.8em;text-align:right}.markdown-preview .mathjax-exps .MathJax_Display{text-align:center !important}.markdown-preview:not([for="preview"]) .code-chunk .btn-group{display:none}.markdown-preview:not([for="preview"]) .code-chunk .status{display:none}.markdown-preview:not([for="preview"]) .code-chunk .output-div{margin-bottom:16px}.scrollbar-style::-webkit-scrollbar{width:8px}.scrollbar-style::-webkit-scrollbar-track{border-radius:10px;background-color:transparent}.scrollbar-style::-webkit-scrollbar-thumb{border-radius:5px;background-color:rgba(150,150,150,0.66);border:4px solid rgba(150,150,150,0.66);background-clip:content-box}html body[for="html-export"]:not([data-presentation-mode]){position:relative;width:100%;height:100%;top:0;left:0;margin:0;padding:0;overflow:auto}html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{position:relative;top:0}@media screen and (min-width:914px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{padding:2em calc(50% - 457px + 2em)}}@media screen and (max-width:914px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{padding:2em}}@media screen and (max-width:450px){html body[for="html-export"]:not([data-presentation-mode]) .markdown-preview{font-size:14px !important;padding:1em}}@media print{html body[for="html-export"]:not([data-presentation-mode]) #sidebar-toc-btn{display:none}}html body[for="html-export"]:not([data-presentation-mode]) #sidebar-toc-btn{position:fixed;bottom:8px;left:8px;font-size:28px;cursor:pointer;color:inherit;z-index:99;width:32px;text-align:center;opacity:.4}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] #sidebar-toc-btn{opacity:1}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc{position:fixed;top:0;left:0;width:300px;height:100%;padding:32px 0 48px 0;font-size:14px;box-shadow:0 0 4px rgba(150,150,150,0.33);box-sizing:border-box;overflow:auto;background-color:inherit}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar{width:8px}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar-track{border-radius:10px;background-color:transparent}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc::-webkit-scrollbar-thumb{border-radius:5px;background-color:rgba(150,150,150,0.66);border:4px solid rgba(150,150,150,0.66);background-clip:content-box}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc a{text-decoration:none}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc ul{padding:0 1.6em;margin-top:.8em}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc li{margin-bottom:.8em}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .md-sidebar-toc ul{list-style-type:none}html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{left:300px;width:calc(100% - 300px);padding:2em calc(50% - 457px - 150px);margin:0;box-sizing:border-box}@media screen and (max-width:1274px){html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{padding:2em}}@media screen and (max-width:450px){html body[for="html-export"]:not([data-presentation-mode])[html-show-sidebar-toc] .markdown-preview{width:100%}}html body[for="html-export"]:not([data-presentation-mode]):not([html-show-sidebar-toc]) .markdown-preview{left:50%;transform:translateX(-50%)}html body[for="html-export"]:not([data-presentation-mode]):not([html-show-sidebar-toc]) .md-sidebar-toc{display:none}
/* Please visit the URL below for more information: */
/* https://shd101wyy.github.io/markdown-preview-enhanced/#/customize-css */
.markdown-preview.markdown-preview {
font-size: 0.8rem;
line-height: 1.2rem;
}
.markdown-preview.markdown-preview pre {
font-size: 0.7rem;
}
.markdown-preview.markdown-preview h1 {
font-size: 1.4rem;
margin-bottom: 1%;
}
.markdown-preview.markdown-preview h2 {
font-size: 1.1rem;
margin-bottom: 1%;
}
.markdown-preview.markdown-preview h3,
.markdown-preview.markdown-preview h4,
.markdown-preview.markdown-preview h5,
.markdown-preview.markdown-preview h6 {
margin-bottom: 1%;
}
</style>
</head>
<body for="html-export">
<div class="mume markdown-preview ">
<div><h1 class="mume-header" id="affine-transformation">Affine Transformation</h1>
<h2 class="mume-header" id="definition">Definition</h2>
<p>Any transformation that can be expressed in the form of a <em>matrix multiplication</em> (linear transformation) followed by a <em>vector addition</em> (translation).</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mi>A</mi><mo>⋅</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>y</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>+</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">T = A \cdot \begin{bmatrix} x \\ y \end{bmatrix} + B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span></span></p>
<p>In which:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>00</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>01</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>10</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>11</mn></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo separator="true">;</mo><mi>B</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>b</mi><mn>00</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>b</mi><mn>10</mn></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix}; B = \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">;</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></span></p>
<p>When concatenated horizontally, this can be expressed in a larger Matrix:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>A</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>B</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>00</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>01</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>b</mi><mn>00</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>10</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>11</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>b</mi><mn>10</mn></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">M = \begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & b_{00} \\ a_{10} & a_{11} & b_{10} \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.20001em;vertical-align:-0.35001em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8500000000000001em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.35000000000000003em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8500000000000001em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.35000000000000003em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">]</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></span></p>
<p>By the definition above (<em>matmul</em> + <em>vector addition</em>), affine transformation can be used to achieve:</p>
<ul>
<li>Scaling (linear transformation)</li>
<li>Rotations (linear transformation)</li>
<li>Translations (vector additions)</li>
</ul>
<p>Affine transformation preserves points, straight lines, and planes. Parallel lines will remain parallel. It does not however preserve the distance and angles between points.</p>
<p>We represent an Affine Transformation using a <strong>2x3 matrix</strong>.</p>
<h3 class="mume-header" id="mathematical-definitions">Mathematical Definitions</h3>
<p>Consider the goal of transforming a 2D vector <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>y</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">X = \begin{bmatrix} x \\ y \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span> using <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span> to obtain <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span></span></span></span>, we can do it like such:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mi>A</mi><mo>⋅</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>y</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>+</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">T = A \cdot \begin{bmatrix} x \\ y \end{bmatrix} + B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span></span></p>
<p>Or equivalently:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mi>M</mi><mo>⋅</mo><mo stretchy="false">[</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>1</mn><msup><mo stretchy="false">]</mo><mi>T</mi></msup><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>a</mi><mn>00</mn></msub><mi>x</mi><mo>+</mo><msub><mi>a</mi><mn>01</mn></msub><mi>y</mi><mo>+</mo><msub><mi>b</mi><mn>00</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>a</mi><mn>10</mn></msub><mi>x</mi><mo>+</mo><msub><mi>a</mi><mn>11</mn></msub><mi>y</mi><mo>+</mo><msub><mi>b</mi><mn>10</mn></msub></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">T = M \cdot [x,y,1]^T = \begin{bmatrix}
a_{00}x + a_{01}y + b_{00} \\ a_{10}x + a_{11}y + b_{10} \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1413309999999999em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose"><span class="mclose">]</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8913309999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></span></p>
<h4 class="mume-header" id="practical-examples">Practical Examples</h4>
<p>In <code>scale_04.py</code> from the <strong>Examples and Illustrations</strong> section, you'll see that the 2x3 matrix <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span></span></span></span> is simple defined as such:<br>
<code>np.float32([[3, 0, 0], [0, 3, 0]])</code></p>
<p>When you explicitly specify a 2x3 matrix, think of the first two columns as the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> component, or the matrix-multiplication process. The third column, naturally, represents the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span> component, or the vector addition process. This may sound a little abstract, so I encourage you to pause and take a look at the code below:</p>
<pre data-role="codeBlock" data-info="py" class="language-python"><span class="token punctuation">(</span>h<span class="token punctuation">,</span> w<span class="token punctuation">)</span> <span class="token operator">=</span> img<span class="token punctuation">.</span>shape<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token number">2</span><span class="token punctuation">]</span>
mat <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">,</span> <span class="token operator">-</span><span class="token number">140</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">,</span> <span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">20</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
translated <span class="token operator">=</span> cv2<span class="token punctuation">.</span>warpAffine<span class="token punctuation">(</span>img<span class="token punctuation">,</span> mat<span class="token punctuation">,</span> <span class="token punctuation">(</span>w<span class="token punctuation">,</span> h<span class="token punctuation">)</span><span class="token punctuation">)</span>
cv2<span class="token punctuation">.</span>imshow<span class="token punctuation">(</span><span class="token string">"Translated"</span><span class="token punctuation">,</span> translated<span class="token punctuation">)</span>
</pre><p>Notice that our <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> is an <em>identity matrix</em> of size 2. An identity matrix is the matrix equivalent of a scalar 1. Multiplying a matrix by its identity matrix doesn't change it by anything.</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>1</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>⋅</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>y</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>+</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mo>−</mo><mn>140</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>20</mn></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -140 \\ 20 \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord">1</span><span class="mord">4</span><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></span></p>
<p>Which leads to:<br>
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>1</mn><mo>⋅</mo><mi>x</mi><mo>+</mo><mn>0</mn><mo>⋅</mo><mi>y</mi><mo>−</mo><mn>140</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><mn>0</mn><mo>⋅</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>⋅</mo><mi>y</mi><mo>+</mo><mn>20</mn></mrow></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">T = \begin{bmatrix} 1 \cdot x + 0 \cdot y -140 \\ 0 \cdot x + 1 \cdot y + 20 \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mord">4</span><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mord">0</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></span></p>
<p>And our <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span>, the vector addition component, moves each pixel -- or more formally, translate each pixel -- on the image by -140 in the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span> direction and 20 on the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span> direction. Find the full code example on <code>translate_01.py</code>.</p>
<h2 class="mume-header" id="motivation">Motivation</h2>
<ol>
<li>
<p>Imaging systems in the real-world are often subject to <strong>geometric distortion</strong>. The distortion may be introduced by perspective irregularities, physical constraints (e.g camera placements), or other reasons.</p>
</li>
<li>
<p>In the field of GIS (geographic information systems), routinely one would use affine transformation to "convert" geographic coordinates into screen coordinates such that it can <strong>be displayed and presented</strong> on our handheld / navigational devices.</p>
</li>
<li>
<p>One may also overlay coordinate data on a spatial data that reference a different coordinate systems; Or to <strong>"stitch" together</strong> different sources of data using a series of transformation</p>
</li>
</ol>
<p>These are but a handful of examples where one may expect to see routine use of affine transformations. If you're spending any amount of time in computer vision, a high degree of familiarity with these remapping routines in OpenCV will come in very handy.</p>
<p>In your learn-by-building section, you will find a less-than-perfectly-digitalized map, <code>belitung_raw.jpg</code>. Your job is to apply what you've apply the necessary affine transformation to correct its perspective distortion and the resize the map accordingly.</p>
<h2 class="mume-header" id="getting-affine-transformation">Getting Affine Transformation</h2>
<p>Given the importance of such a relation between two images, it should come as no surprise that <code>opencv</code> packs a number of convenience methods to help us specify this transformation. The two common use-cases are:</p>
<ul>
<li>
<ol>
<li>We <strong>specify</strong> our 2D vector representing the original image, <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span> and our 2x3 transformation matrix <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span></span></span></span> constructed in <code>numpy</code>.</li>
</ol>
<ul>
<li>Example code:</li>
</ul>
<pre data-role="codeBlock" data-info="py" class="language-python">img <span class="token operator">=</span> cv2<span class="token punctuation">.</span>imread<span class="token punctuation">(</span><span class="token string">"our_image.png"</span><span class="token punctuation">)</span>
mat <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
result <span class="token operator">=</span> cv2<span class="token punctuation">.</span>warpAffine<span class="token punctuation">(</span>img<span class="token punctuation">,</span> M<span class="token operator">=</span>mat<span class="token punctuation">,</span> dsize<span class="token operator">=</span><span class="token punctuation">(</span><span class="token number">600</span><span class="token punctuation">,</span> <span class="token number">600</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
cv2<span class="token punctuation">.</span>imshow<span class="token punctuation">(</span><span class="token string">"Transformed"</span><span class="token punctuation">,</span> result<span class="token punctuation">)</span>
</pre></li>
<li>
<ol start="2">
<li>We <strong>obtain</strong> our 2x3 transformation matrix <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span></span></span></span> by deriving the geometric relation using three points. Three points form a triangle, which is the minimal case required to find the affine transformation before applying the transformation to the whole image.</li>
</ol>
<ul>
<li>Example code:</li>
</ul>
<pre data-role="codeBlock" data-info="py" class="language-python">img <span class="token operator">=</span> cv2<span class="token punctuation">.</span>imread<span class="token punctuation">(</span><span class="token string">"our_image.png"</span><span class="token punctuation">)</span>
coords_s <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">10</span><span class="token punctuation">,</span> <span class="token number">10</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">80</span><span class="token punctuation">,</span> <span class="token number">10</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">10</span><span class="token punctuation">,</span> <span class="token number">80</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
coords_d <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">10</span><span class="token punctuation">,</span> <span class="token number">10</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">95</span><span class="token punctuation">,</span> <span class="token number">10</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">10</span><span class="token punctuation">,</span> <span class="token number">80</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
mat <span class="token operator">=</span> cv2<span class="token punctuation">.</span>getAffineTransform<span class="token punctuation">(</span>src<span class="token operator">=</span>coords_s<span class="token punctuation">,</span> dst<span class="token operator">=</span>coords_d<span class="token punctuation">)</span>
result <span class="token operator">=</span> cv2<span class="token punctuation">.</span>warpAffine<span class="token punctuation">(</span>img<span class="token punctuation">,</span> M<span class="token operator">=</span>mat<span class="token punctuation">,</span> dsize<span class="token operator">=</span><span class="token punctuation">(</span><span class="token number">200</span><span class="token punctuation">,</span> <span class="token number">200</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
cv2<span class="token punctuation">.</span>imshow<span class="token punctuation">(</span><span class="token string">"Transformed"</span><span class="token punctuation">,</span> result<span class="token punctuation">)</span>
</pre><p>Have we printed out <code>mat</code> from the snippet of code above, we would see a 2x3 matrix that looks like this:</p>
<pre data-role="codeBlock" data-info="py" class="language-python"><span class="token punctuation">[</span><span class="token punctuation">[</span> <span class="token number">1.21428571</span> <span class="token number">0</span><span class="token punctuation">.</span> <span class="token operator">-</span><span class="token number">2.14285714</span><span class="token punctuation">]</span>
<span class="token punctuation">[</span> <span class="token number">0</span><span class="token punctuation">.</span> <span class="token number">1</span><span class="token punctuation">.</span> <span class="token number">0</span><span class="token punctuation">.</span> <span class="token punctuation">]</span><span class="token punctuation">]</span>
</pre></li>
<li>
<p>2b <em>[Optional]</em>. As an extension to point (2) above, consider how we would use <code>cv2.warpAffine</code> to achieve a 90 degree clockwise rotation. If you have attended my Unsupervised Learning course from the Machine Learning Specialization, you will undoubtedly have seen this quick reference:<br>
<img src="assets/rotationmatrix.gif" alt></p>
<p>To plug that directly into the <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> of our original formula:<br>
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>T</mi><mo>=</mo><mi>A</mi><mo>⋅</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>x</mi></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>y</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>+</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">T = A \cdot \begin{bmatrix} x \\ y \end{bmatrix} + B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span></span></p>
<p>A 90-degree clockwise rotation could be implemented as a 270-degree anti-clockwise rotation. Let's see this implementation in <code>opencv</code>:</p>
<ul>
<li>Example code:</li>
</ul>
<pre data-role="codeBlock" data-info="py" class="language-python">img <span class="token operator">=</span> cv2<span class="token punctuation">.</span>imread<span class="token punctuation">(</span><span class="token string">"assets/cvess.png"</span><span class="token punctuation">)</span>
<span class="token punctuation">(</span>h<span class="token punctuation">,</span> w<span class="token punctuation">)</span> <span class="token operator">=</span> img<span class="token punctuation">.</span>shape<span class="token punctuation">[</span><span class="token punctuation">:</span><span class="token number">2</span><span class="token punctuation">]</span>
center <span class="token operator">=</span> <span class="token punctuation">(</span>w <span class="token operator">//</span> <span class="token number">2</span><span class="token punctuation">,</span> h <span class="token operator">//</span> <span class="token number">2</span><span class="token punctuation">)</span>
mat3 <span class="token operator">=</span> cv2<span class="token punctuation">.</span>getRotationMatrix2D<span class="token punctuation">(</span>center<span class="token punctuation">,</span> angle<span class="token operator">=</span><span class="token number">270</span><span class="token punctuation">,</span> scale<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">)</span>
<span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string-interpolation"><span class="token string">f'270 degree anti-clockwise: \n </span><span class="token interpolation"><span class="token punctuation">{</span>np<span class="token punctuation">.</span><span class="token builtin">round</span><span class="token punctuation">(</span>mat3<span class="token punctuation">,</span> <span class="token number">2</span><span class="token punctuation">)</span><span class="token punctuation">}</span></span><span class="token string">'</span></span><span class="token punctuation">)</span>
rotated <span class="token operator">=</span> cv2<span class="token punctuation">.</span>warpAffine<span class="token punctuation">(</span>img<span class="token punctuation">,</span> mat<span class="token punctuation">,</span> <span class="token punctuation">(</span>w<span class="token punctuation">,</span> h<span class="token punctuation">)</span><span class="token punctuation">)</span>
cv2<span class="token punctuation">.</span>imshow<span class="token punctuation">(</span><span class="token string">"Rotated"</span><span class="token punctuation">,</span> rotated<span class="token punctuation">)</span>
<span class="token comment"># </span>
<span class="token comment"># print output:</span>
<span class="token comment"># </span>
<span class="token comment"># 270 degree anti-clockwise: </span>
<span class="token comment"># [[ -0. -1. 400.]</span>
<span class="token comment"># [ 1. -0. 0.]] </span>
</pre><p>We learned earlier that:<br>
<span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>A</mi></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mi>B</mi></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>00</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>01</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>b</mi><mn>00</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>10</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>a</mi><mn>11</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>b</mi><mn>10</mn></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">M = \begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & b_{00} \\ a_{10} & a_{11} & b_{10} \end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.20001em;vertical-align:-0.35001em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size1">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8500000000000001em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">A</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.35000000000000003em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8500000000000001em;"><span style="top:-3.01em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.35000000000000003em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size1">]</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-0.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">[</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">0</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mtight">0</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">]</span></span></span></span></span></span></span></p>
<p>So <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault">A</span></span></span></span> would be the <code>[[0, -1], [1, 0]]</code> and <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05017em;">B</span></span></span></span> would be <code>[400, 0]</code>. Fundamentally, the <code>cv2.getRotationMatrix2D</code> is still applying an affine transformation to map the pixels from one point to another using a 2x3 matrix.</p>
<ul>
<li>Skeptical and want further mathematical proof?
<ul>
<li>Hop to the <strong>Trigonometry Proof</strong> section.</li>
</ul>
</li>
<li>Want to experiment?
<ul>
<li>Modify the script in <code>rotate_01.py</code> to obtain <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span></span></span></span> for a 180-degree rotation, and a 30-degree counter-clockwise rotation</li>
</ul>
</li>
</ul>
</li>
</ul>
<h3 class="mume-header" id="dive-deeper">Dive Deeper</h3>
<p>Let's also look at another application of <code>getAffineTransform</code> to strengthen our understanding.</p>
<p>Supposed we specify <span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span></span></span></span> to be <code>mat = np.float32([[1, 0, 0], [0, 1, 0]])</code>, what do you expect the transformation to be?</p>
<p>Take a minute to discuss with your classmates or refer back to the Mathematical Definitions section above and try to internalize this before moving forward.</p>
<p>To verify your answer, run <code>scale_03.py</code> and see if your hunch was right.</p>
<p>For an extra challenge, let's assume <code>our_image.png</code> is an image of 200x200. Pay attention to the specification of <code>mat</code> (<span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">M</span></span></span></span>), what do you expect the outcome <code>result</code> to be?</p>
<p>Take a minute to discuss before moving forward.</p>
<pre data-role="codeBlock" data-info="py" class="language-python">img <span class="token operator">=</span> cv2<span class="token punctuation">.</span>imread<span class="token punctuation">(</span><span class="token string">"assets/our_image.png"</span><span class="token punctuation">)</span>
cv2<span class="token punctuation">.</span>imshow<span class="token punctuation">(</span><span class="token string">"Original"</span><span class="token punctuation">,</span> img<span class="token punctuation">)</span>
<span class="token comment"># custom transformation matrix</span>
mat <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">,</span> <span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
<span class="token keyword">print</span><span class="token punctuation">(</span>mat<span class="token punctuation">)</span>
result <span class="token operator">=</span> cv2<span class="token punctuation">.</span>warpAffine<span class="token punctuation">(</span>img<span class="token punctuation">,</span> M<span class="token operator">=</span>mat<span class="token punctuation">,</span> dsize<span class="token operator">=</span><span class="token punctuation">(</span><span class="token number">200</span><span class="token punctuation">,</span> <span class="token number">200</span><span class="token punctuation">)</span><span class="token punctuation">)</span>
</pre><p>You may have expected the 2x3 matrix <code>mat</code> to have a scaling effect on our original image. However, the required argument of <code>dsize</code> in our <code>warpAffine()</code> call constrained the output to its original dimension, 200x200, thus "cropping out" only the top left corner of the image.</p>
<p>Supposed we'll like to see the transformed image (scaled by 3x) in its entirety, how would we have changed the value passed to the <code>dsize</code> argument?</p>
<p>Refer to <code>scale_04.py</code> to verify that you've got this right.</p>
<h4 class="mume-header" id="trigonometry-proof">Trigonometry Proof</h4>
<p><em>This section is optional; you may choose to skip this section.</em></p>
<ul>
<li class="task-list-item">
<p><input type="checkbox" class="task-list-item-checkbox"> <a href="https://www.youtube.com/watch?v=tIixrNtLJ8U">Watch Rotation Matrix Explained Visually </a></p>
<iframe width="560" height="315" src="https://www.youtube.com/embed/pWfXR_HmyUw" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<ul>
<li><a href="https://www.youtube.com/watch?v=pWfXR_HmyUw">Bahasa Indonesia voiceover</a> is also available</li>
</ul>
</li>
</ul>
<p>If you're done watching the video, see the same example being presented in code:</p>
<pre data-role="codeBlock" data-info="py" class="language-python">a <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">,</span> <span class="token operator">-</span><span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">,</span> <span class="token punctuation">[</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
x <span class="token operator">=</span> np<span class="token punctuation">.</span>float32<span class="token punctuation">(</span><span class="token punctuation">[</span><span class="token number">3</span><span class="token punctuation">,</span> <span class="token number">6</span><span class="token punctuation">]</span><span class="token punctuation">)</span>
np<span class="token punctuation">.</span>matmul<span class="token punctuation">(</span>a<span class="token punctuation">,</span> x<span class="token punctuation">)</span>
<span class="token comment"># output:</span>
<span class="token comment"># array([-6., 3.], dtype=float32)</span>
</pre><h2 class="mume-header" id="code-illustrations">Code Illustrations</h2>
<ul>
<li>Code example of using <code>getRotationMatrix2D()</code> to get a 2x3 matrix: <strong><code>rotate_01.py</code></strong></li>
<li>Code example of using three points to <code>getAffineTransform()</code>, obtaining a 2x3 matrix of <code>[[1,0,0], [0,1,0]]</code> (no transformation): <code>scale_01.py</code></li>
<li>Code example of explicit specification for our 2x3 matrix using <code>np.float32([[1,0,0], [0,1,0]])</code>: <strong><code>scale_02.py</code></strong></li>
<li>Code example of setting the <code>dsize</code> parameter in <code>cv2.warpAffine</code> without transformation: <strong><code>scale_03.py</code></strong></li>
<li>Code example of a scale transformation and setting the <code>dsize</code> parameter accordingly: <strong><code>scale_04.py</code></strong></li>
<li>Code example of using three points to <code>getAffineTransform()</code>, obtaining a 2x3 matrix of <code>[[1,0,0], [0,1,0]]</code>: <strong><code>scale_05.py</code></strong></li>
<li>Code example of translating (shifting an image) using a 2x3 matrix: <strong><code>translate_01.py</code></strong></li>
</ul>
<h2 class="mume-header" id="summary-and-key-points">Summary and Key Points</h2>
<ol>
<li>
<p>Images from imaging systems and capturing systems are often "subject to geometric distortion introduced by perspective irregularities"<sup class="footnote-ref"><a href="#fn1" id="fnref1">[1]</a></sup> or "deformations that occur with non-ideal camera angles"<sup class="footnote-ref"><a href="#fn2" id="fnref2">[2]</a></sup>.</p>
</li>
<li>
<p>In the case of translation or scaling, we typically specify our 2x3 matrix using <code>np.float()</code> and feed this matrix to <code>cv2.warpAffine()</code></p>
</li>
<li>
<p>In the case of rotation, we typically use the convenience function <code>cv2.getAffineTransform()</code> to obtain the 2x3 matrix before feeding it to <code>cv2.warpAffine()</code></p>
</li>
</ol>
<blockquote>
<p><code>cv2.getAffineTransform(src, dst)</code></p>
<p><strong>Parameters:</strong></p>
<ul>
<li><strong>src</strong> - Coordinates of triangle vertices in the source image</li>
<li><strong>dst</strong> - Coordinates of corresponding triangle vertices in the destination triange</li>
</ul>
</blockquote>
<h2 class="mume-header" id="learn-by-building">Learn-by-Building</h2>
<p>In the <code>homework</code> directory, you'll find a digital map <code>belitung_raw.jpg</code>. Your job is to apply what you've learned in this lesson to restore the map by correcting its skew and resize it appropriately.</p>
<p><img src="assets/hw1_belitung.png" alt></p>
<h2 class="mume-header" id="references">References</h2>
<hr class="footnotes-sep">
<section class="footnotes">
<ol class="footnotes-list">
<li id="fn1" class="footnote-item"><p>Fisher, R., Perkins, S., Walker, A., Wolfart, E., Hypermedia Image Processing Learning (HIPR2) Resources, 2003 <a href="#fnref1" class="footnote-backref">↩︎</a></p>
</li>
<li id="fn2" class="footnote-item"><p><a href="https://www.mathworks.com/discovery/affine-transformation.html">MathWorks</a>, Linear mapping method using affine transformation, Affine Transformation <a href="#fnref2" class="footnote-backref">↩︎</a></p>
</li>
</ol>
</section>
</div>
</div>
<div class="md-sidebar-toc"><ul>
<li><a href="#affine-transformation">Affine Transformation</a>
<ul>
<li><a href="#definition">Definition</a>
<ul>
<li><a href="#mathematical-definitions">Mathematical Definitions</a>
<ul>
<li><a href="#practical-examples">Practical Examples</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#motivation">Motivation</a></li>
<li><a href="#getting-affine-transformation">Getting Affine Transformation</a>
<ul>
<li><a href="#dive-deeper">Dive Deeper</a>
<ul>
<li><a href="#trigonometry-proof">Trigonometry Proof</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#code-illustrations">Code Illustrations</a></li>
<li><a href="#summary-and-key-points">Summary and Key Points</a></li>
<li><a href="#learn-by-building">Learn-by-Building</a></li>
<li><a href="#references">References</a></li>
</ul>
</li>
</ul>
</div>
<a id="sidebar-toc-btn">≡</a>
<script>
var sidebarTOCBtn = document.getElementById('sidebar-toc-btn')
sidebarTOCBtn.addEventListener('click', function(event) {
event.stopPropagation()
if (document.body.hasAttribute('html-show-sidebar-toc')) {
document.body.removeAttribute('html-show-sidebar-toc')
} else {
document.body.setAttribute('html-show-sidebar-toc', true)
}
})
</script>
</body></html>