-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun.py
230 lines (191 loc) · 7.91 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import json
import logging
import os
from typing import Tuple
import torch
import transformers
from transformers import Trainer as HFTrainer
from transformers import set_seed
from transformers.hf_argparser import DataClass
from transformers.optimization import Adafactor, AdamW
from transformers.trainer import Trainer
from core.argument_parsers import parser
from core.collator import T2TDataCollator
from core.evaluate import evaluate_on_train_end
from hf.model import BertModel, MT5Model
from prepare_data import main as prepare_data
from utils.file import save_experiment_config
from utils.neptune import init_neptune, log_to_neptune
from utils.wandb import init_wandb, log_to_wandb
def setup_logger(args: DataClass) -> logging.Logger:
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper() if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
args.device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
logger.info("Training/evaluation parameters %s", args)
return logger
def check_output(args: DataClass, logger: logging.Logger = None) -> None:
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
def load_datasets(args: DataClass, train: bool, eval: bool, logger: logging.Logger) -> Tuple:
logger.info("loading dataset")
train_dataset = torch.load(args.train_file_path) if train else None
valid_dataset = torch.load(args.valid_file_path) if eval else None
logger.info("finished loading dataset")
return train_dataset, valid_dataset
def main(args_file_path: str = None):
model_args, data_args, training_args = parser(args_file_path)
# check for output_dir with given arguments.
check_output(training_args)
logger = setup_logger(training_args)
# set seed
set_seed(training_args.seed)
# initialize experiment tracking
report_to = []
if training_args.do_train:
wandb_status, wandb = init_wandb(project=model_args.wandb_project, name=training_args.run_name)
else:
wandb_status, wandb = init_wandb(
project=model_args.wandb_project, name=training_args.run_name, id=model_args.wandb_id
)
neptune_status, neptune = init_neptune(
project=model_args.neptune_project, api_token=model_args.neptune_api_token, name=training_args.run_name
)
if wandb_status:
report_to.append("wandb")
if neptune_status:
report_to.append("neptune")
training_args.report_to = report_to
# disable wandb console logs
logging.getLogger("wandb.run_manager").setLevel(logging.WARNING)
# prepare data()
if data_args.prepare_data:
prepare_data(args_file_path)
# load model
if model_args.model_type == "mt5":
model = MT5Model(
model_name_or_path=model_args.model_name_or_path,
tokenizer_name_or_path=model_args.tokenizer_path,
freeze_embeddings=training_args.freeze_embeddings,
cache_dir=model_args.cache_dir,
use_cuda=True,
)
elif model_args.model_type == "bert":
model = BertModel(
model_name_or_path=model_args.model_name_or_path,
tokenizer_name_or_path=model_args.tokenizer_path,
freeze_embeddings=training_args.freeze_embeddings,
cache_dir=model_args.cache_dir,
use_cuda=True,
)
train_dataset, valid_dataset = load_datasets(
data_args, train=training_args.do_train, eval=training_args.do_eval, logger=logger
)
# set optimizer
if training_args.adafactor:
# as adviced in https://huggingface.co/transformers/main_classes/optimizer_schedules.html#adafactor-pytorch
optimizer = Adafactor(
model.model.parameters(),
scale_parameter=False,
relative_step=False,
warmup_init=False,
weight_decay=training_args.weight_decay,
lr=training_args.learning_rate,
)
else:
optimizer = AdamW(
model.model.parameters(), weight_decay=training_args.weight_decay, lr=training_args.learning_rate
)
if model_args.model_type == "mt5":
# initialize data_collator
data_collator = T2TDataCollator(
tokenizer=model.tokenizer, mode="training", using_tpu=training_args.tpu_num_cores is not None
)
# fix https://discuss.huggingface.co/t/mt5-fine-tuning-keyerror-source-ids/5257/2
training_args.remove_unused_columns = False if model_args.model_type == "mt5" else True
# export experiment config
save_experiment_config(model_args, data_args, training_args)
# start training
if training_args.do_train:
# init model
if model_args.model_type == "mt5":
trainer: Trainer = HFTrainer(
model=model.model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
data_collator=data_collator,
optimizers=(optimizer, None),
)
elif model_args.model_type == "bert":
trainer: Trainer = HFTrainer(
model=model.model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=valid_dataset,
optimizers=(optimizer, None),
)
# perform training
trainer.train(
resume_from_checkpoint=model_args.model_name_or_path
if os.path.isdir(model_args.model_name_or_path)
else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
model.tokenizer.save_pretrained(training_args.output_dir)
# start evaluation
if training_args.do_eval and training_args.local_rank in [-1, 0]:
# arange neptune/wandb loggers
if training_args.do_train:
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, transformers.integrations.WandbCallback):
wandb = callback._wandb
for callback in trainer.callback_handler.callbacks:
if isinstance(callback, transformers.integrations.NeptuneCallback):
neptune_run = callback._neptune_run
if not training_args.do_train:
if "neptune" in report_to:
neptune_run = neptune.init(
project=os.getenv("NEPTUNE_PROJECT"),
api_token=os.getenv("NEPTUNE_API_TOKEN"),
mode=os.getenv("NEPTUNE_CONNECTION_MODE", "async"),
name=os.getenv("NEPTUNE_RUN_NAME", None),
run=model_args.neptune_run,
)
elif "wandb" in report_to:
wandb.init(project=model_args.wandb_project, name=model_args.run_name, id=model_args.wandb_id)
# calculate evaluation results
overall_results = evaluate_on_train_end(model_args, training_args)
# log to neptune/wandb
if "neptune" in report_to:
log_to_neptune(neptune_run, overall_results)
if "wandb" in report_to:
log_to_wandb(wandb, overall_results)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
def run_multi(args_dict):
with open("args.json", "w") as f:
json.dump(args_dict, f)
main(args_file="args.json")
if __name__ == "__main__":
main()