forked from jinxiwang/ocr_TDR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_crnn.py
159 lines (126 loc) · 6.7 KB
/
train_crnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import time
import logging
import numpy as np
import tensorflow as tf
from crnn import CRNN
from dataload import Dataload
from utlis.net_cfg_parser import parser_cfg_file
class Train_CRNN(object):
def __init__(self, pre_train=False):
net_params, train_params = parser_cfg_file('./net.cfg')
self.input_height = int(net_params['input_height'])
self.input_width = int(net_params['input_width'])
self.batch_size = int(train_params['batch_size'])
self._learning_rate = float(train_params['learning_rate'])
self._max_iterators = int(train_params['max_iterators'])
self._train_logger_init()
self._pre_train = pre_train
self._model_save_path = str(train_params['model_save_path'])
if self._pre_train:
ckpt = tf.train.checkpoint_exists(self._model_save_path)
if ckpt:
print('Checkpoint is valid...')
f = open('./model/train_step.txt', 'r')
step = f.readline()
self._start_step = int(step)
f.close()
else:
assert 0, print('Checkpoint is invalid...')
else:
self._start_step = 0
self._inputs = tf.placeholder(tf.float32, [self.batch_size, 32, self.input_width, 1])
# label
self._label = tf.sparse_placeholder(tf.int32, name='label')
# The length of the sequence [32] * 64
self._seq_len = tf.placeholder(tf.int32, [None], name='seq_len')
crnn_net = CRNN(net_params, self._inputs, self._seq_len, self.batch_size, True)
self._net_output, self._decoded, self._max_char_count = crnn_net.construct_graph()
self.dense_decoded = tf.sparse_tensor_to_dense(self._decoded[0], default_value=-1)
def train(self):
with tf.name_scope('loss'):
loss = tf.nn.ctc_loss(self._label, self._net_output, self._seq_len)
loss = tf.reduce_mean(loss)
tf.summary.scalar("loss", loss)
with tf.name_scope('optimizer'):
train_op = tf.train.AdamOptimizer(self._learning_rate).minimize(loss)
with tf.name_scope('accuracy'):
accuracy = 1 - tf.reduce_mean(tf.edit_distance(tf.cast(self._decoded[0], tf.int32), self._label))
accuracy_broad = tf.summary.scalar("accuracy", accuracy)
data = Dataload(self.batch_size, './data/dataset_label.txt',
img_height=self.input_height, img_width=self.input_width)
# 保存模型
saver = tf.train.Saver()
# tensorboard
merged = tf.summary.merge_all()
with tf.Session() as sess:
if self._pre_train:
saver.restore(sess, self._model_save_path)
print('load model from:', self._model_save_path)
else:
sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter("./tensorboard_logs/", sess.graph)
epoch = data.epoch
for step in range(self._start_step + 1, self._max_iterators):
batch_data, batch_label = data.get_train_batch()
feed_dict = {self._inputs: batch_data,
self._label: batch_label,
self._seq_len: [self._max_char_count] * self.batch_size}
summ = sess.run(merged, feed_dict=feed_dict)
train_writer.add_summary(summ, global_step=step)
sess.run(train_op, feed_dict=feed_dict)
if step%20 == 0:
train_loss = sess.run(loss, feed_dict=feed_dict)
self.train_logger.info('step:%d, total loss: %6f' % (step, train_loss))
self.train_logger.info('compute accuracy...')
train_accuracy = sess.run(accuracy, feed_dict=feed_dict)
val_data, val_label = data.get_val_batch(self.batch_size)
val_accuracy = sess.run(accuracy, feed_dict={self._inputs: val_data,
self._label: val_label,
self._seq_len: [self._max_char_count] * self.batch_size})
self.train_logger.info('epoch:%d, train accuracy: %6f' % (epoch, train_accuracy))
self.train_logger.info('epoch:%d, val accuracy: %6f' % (epoch, val_accuracy))
# 用于验证网络的输出是否正确
# if train_accuracy>0.9:
# print('label:', batch_label)
# print('predict:', sess.run(self.dense_decoded, feed_dict=feed_dict))
# if step%10 == 0:
# train_accuracy = sess.run(accuracy, feed_dict=feed_dict)
# self.train_logger.info('step:%d, train accuracy: %6f' % (epoch, train_accuracy))
if step%100 == 0:
self.train_logger.info('saving model...')
f = open('./model/train_step.txt', 'w')
f.write(str(self._start_step + step))
f.close()
save_path = saver.save(sess, self._model_save_path)
self.train_logger.info('model saved at %s' % save_path)
if epoch != data.epoch:
epoch = data.epoch
self.train_logger.info('compute accuracy...')
train_accuracy = sess.run(accuracy, feed_dict=feed_dict)
self.train_logger.info('epoch:%d, accuracy: %6f' % (epoch, train_accuracy))
summ = sess.run(accuracy_broad, feed_dict=feed_dict)
train_writer.add_summary(summ, global_step=step)
train_writer.close()
def _train_logger_init(self):
"""
初始化log日志
:return:
"""
self.train_logger = logging.getLogger('train')
self.train_logger.setLevel(logging.DEBUG)
# 添加文件输出
log_file = './train_logs/' + time.strftime('%Y%m%d%H%M', time.localtime(time.time())) + '.logs'
file_handler = logging.FileHandler(log_file, mode='w')
file_handler.setLevel(logging.DEBUG)
file_formatter = logging.Formatter('%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
file_handler.setFormatter(file_formatter)
self.train_logger.addHandler(file_handler)
# 添加控制台输出
consol_handler = logging.StreamHandler()
consol_handler.setLevel(logging.DEBUG)
consol_formatter = logging.Formatter('%(message)s')
consol_handler.setFormatter(consol_formatter)
self.train_logger.addHandler(consol_handler)
if __name__ == "__main__":
train = Train_CRNN(pre_train=True)
train.train()