forked from jinxiwang/ocr_TDR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataload.py
207 lines (163 loc) · 6.47 KB
/
dataload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import random
import cv2
class Dataload(object):
def __init__(self, batch_size, label_path,img_height=32, img_width=1050):
self.batch_size = batch_size
self.input_img_height = img_height
self.input_img_width = img_width
self.label_path = label_path
f = open(self.label_path, 'r')
data = f.read()
self.data_dict = eval(data)
self.img_path_list = list(self.data_dict.keys())
self.current_index = 0
self.epoch = 0
def get_val_batch(self, batch_size):
"""
获取验证集数据
:param batch_size:
:return:
"""
f = open('./data/val_data.txt', 'r')
data = f.read()
val_data_dict = eval(data)
val_img_path_list = list(self.data_dict.keys())
val_data_num = len(val_img_path_list)
batch_data = np.zeros([batch_size,
self.input_img_height,
self.input_img_width])
batch_label = []
for i in range(batch_size):
random_index = random.randint(0, val_data_num)
img = cv2.imread(val_img_path_list[random_index])
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_resized = self._resize_img(img)
batch_data[i] = img_resized
batch_label.append(val_data_dict[val_img_path_list[random_index]])
# print(batch_label)
batch_label = self._sparse_tuple_from(batch_label)
batch_data = batch_data.reshape([batch_size,
self.input_img_height,
self.input_img_width,
1])
batch_data = batch_data / 255 * 2 - 1
return batch_data, batch_label
def get_train_batch(self):
"""
获取训练batch
:return:
"""
if self.current_index + self.batch_size +1 > len(self.img_path_list):
self.current_index = len(self.img_path_list) - self.batch_size - 1
self.epoch += 1
batch_data = np.zeros([self.batch_size,
self.input_img_height,
self.input_img_width])
batch_label = []
for i in range(self.batch_size):
img = cv2.imread(self.img_path_list[self.current_index])
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_resized = self._resize_img(img)
batch_data[i] = img_resized
batch_label.append(self.data_dict[self.img_path_list[self.current_index]])
self.current_index += 1
#print(batch_label)
batch_label = self._sparse_tuple_from(batch_label)
if self.current_index + 1 == len(self.img_path_list):
self.current_index = 0
batch_data = batch_data.reshape([self.batch_size,
self.input_img_height,
self.input_img_width,
1])
#print(np.shape(batch_data))
batch_data = batch_data / 255 * 2 - 1
return batch_data, batch_label
def _resize_img(self, img):
"""
将图像先转为灰度图,并将图像进行resize
:param img:
:return:
"""
height, width = np.shape(img)
if width > self.input_img_width:
width = self.input_img_width
ratio = float(self.input_img_width) / width
outout_img = cv2.resize(img, (self.input_img_width,self.input_img_height))
else:
outout_img = np.zeros([self.input_img_height, self.input_img_width])
ratio = self.input_img_height / height
img_resized = cv2.resize(img, (int(width * ratio),self.input_img_height))
outout_img[:, 0:np.shape(img_resized)[1]] = img_resized
return outout_img
def _sparse_tuple_from(self, sequences, dtype=np.int32):
"""
将矩阵转为稀疏矩阵存储方式
:param sequences:
:param dtype:
:return:
"""
indices = []
values = []
for n, seq in enumerate(sequences):
indices.extend(zip([n] * len(seq), [i for i in range(len(seq))]))
values.extend(seq)
indices = np.asarray(indices, dtype=np.int64)
values = np.asarray(values, dtype=dtype)
shape = np.asarray([len(sequences), np.asarray(indices).max(0)[1] + 1], dtype=np.int64)
return indices, values, shape
def decode_batch(self, batch_data, batch_label):
f = open('./data/word_onehot.txt', 'r')
data = f.read()
words_onehot_dict = eval(data)
words_list = list(words_onehot_dict.keys())
words_onehot_list = [words_onehot_dict[words_list[i]] for i in range(len(words_list))]
for i in range(np.shape(batch_data)[0]):
img = batch_data[i]
words = ''
for onehot in batch_label[i]:
if onehot == -1:
continue
words += words_list[words_onehot_list.index(onehot)]
#print(words)
img = np.reshape(img,[32, 1050])
cv2.imwrite('d.jpg', img)
cv2.imshow('d',img)
cv2.waitKey()
def decode_sparse_tensor(self, sparse_tensor):
decoded_indexes = list()
current_i = 0
current_seq = []
for offset, i_and_index in enumerate(sparse_tensor[0]):
i = i_and_index[0]
if i != current_i:
decoded_indexes.append(current_seq)
current_i = i
current_seq = list()
current_seq.append(offset)
decoded_indexes.append(current_seq)
# result = []
# for index in decoded_indexes:
# result.append(self.decode_a_seq(index, sparse_tensor))
# return result
def decode_a_seq(self, indexes, spars_tensor):
decoded = []
for m in indexes:
str = DIGITS[spars_tensor[1][m]]
decoded.append(str)
return decoded
if __name__ == "__main__":
a = Dataload(2, './data/dataset_label.txt')
for i in range(200):
print('index', a.current_index)
print('epoch', a.epoch)
b, c = a.get_train_batch()
print(c)
a.decode_sparse_tensor(c)
a.decode_batch(b,c)
cv2.waitKey()
# for i in range(np.shape(b)[0]):
# img = b[i]
# cv2.imshow('d',img)
# cv2.waitKey(20000)
#print(c)