-
Notifications
You must be signed in to change notification settings - Fork 213
/
Dns.cpp
422 lines (379 loc) · 13.1 KB
/
Dns.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// Arduino DNS client for Enc28J60-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#include "Udp.h"
#include "utility/util.h"
#include "Dns.h"
#include <string.h>
//#include <stdlib.h>
#include "Arduino.h"
#define SOCKET_NONE 255
// Various flags and header field values for a DNS message
#define UDP_HEADER_SIZE 8
#define DNS_HEADER_SIZE 12
#define TTL_SIZE 4
#define QUERY_FLAG (0)
#define RESPONSE_FLAG (1<<15)
#define QUERY_RESPONSE_MASK (1<<15)
#define OPCODE_STANDARD_QUERY (0)
#define OPCODE_INVERSE_QUERY (1<<11)
#define OPCODE_STATUS_REQUEST (2<<11)
#define OPCODE_MASK (15<<11)
#define AUTHORITATIVE_FLAG (1<<10)
#define TRUNCATION_FLAG (1<<9)
#define RECURSION_DESIRED_FLAG (1<<8)
#define RECURSION_AVAILABLE_FLAG (1<<7)
#define RESP_NO_ERROR (0)
#define RESP_FORMAT_ERROR (1)
#define RESP_SERVER_FAILURE (2)
#define RESP_NAME_ERROR (3)
#define RESP_NOT_IMPLEMENTED (4)
#define RESP_REFUSED (5)
#define RESP_MASK (15)
#define TYPE_A (0x0001)
#define CLASS_IN (0x0001)
#define LABEL_COMPRESSION_MASK (0xC0)
// Port number that DNS servers listen on
#define DNS_PORT 53
// Possible return codes from ProcessResponse
#define SUCCESS 1
#define TIMED_OUT -1
#define INVALID_SERVER -2
#define TRUNCATED -3
#define INVALID_RESPONSE -4
void DNSClient::begin(const IPAddress& aDNSServer)
{
iDNSServer = aDNSServer;
iRequestId = 0;
}
int DNSClient::inet_aton(const char* aIPAddrString, IPAddress& aResult)
{
// See if we've been given a valid IP address
const char* p =aIPAddrString;
while (*p &&
( (*p == '.') || ((*p >= '0') && (*p <= '9')) ))
{
p++;
}
if (*p == '\0')
{
// It's looking promising, we haven't found any invalid characters
p = aIPAddrString;
int segment =0;
int segmentValue =0;
while (*p && (segment < 4))
{
if (*p == '.')
{
// We've reached the end of a segment
if (segmentValue > 255)
{
// You can't have IP address segments that don't fit in a byte
return 0;
}
else
{
aResult[segment] = (byte)segmentValue;
segment++;
segmentValue = 0;
}
}
else
{
// Next digit
segmentValue = (segmentValue*10)+(*p - '0');
}
p++;
}
// We've reached the end of address, but there'll still be the last
// segment to deal with
if ((segmentValue > 255) || (segment > 3))
{
// You can't have IP address segments that don't fit in a byte,
// or more than four segments
return 0;
}
else
{
aResult[segment] = (byte)segmentValue;
return 1;
}
}
else
{
return 0;
}
}
int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult)
{
int ret =0;
// See if it's a numeric IP address
if (inet_aton(aHostname, aResult))
{
// It is, our work here is done
return 1;
}
// Check we've got a valid DNS server to use
if (iDNSServer == INADDR_NONE)
{
return INVALID_SERVER;
}
// Find a socket to use
if (iUdp.begin(1024+(millis() & 0xF)) == 1)
{
// Try up to three times
int retries = 0;
// while ((retries < 3) && (ret <= 0))
{
// Send DNS request
ret = iUdp.beginPacket(iDNSServer, DNS_PORT);
if (ret != 0)
{
// Now output the request data
ret = BuildRequest(aHostname);
if (ret != 0)
{
// And finally send the request
ret = iUdp.endPacket();
if (ret != 0)
{
// Now wait for a response
int wait_retries = 0;
ret = TIMED_OUT;
while ((wait_retries < 3) && (ret == TIMED_OUT))
{
ret = ProcessResponse(5000, aResult);
wait_retries++;
}
}
}
}
retries++;
}
// We're done with the socket now
iUdp.stop();
}
return ret;
}
uint16_t DNSClient::BuildRequest(const char* aName)
{
// Build header
// 1 1 1 1 1 1
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ID |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | QDCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ANCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | NSCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// | ARCOUNT |
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
// As we only support one request at a time at present, we can simplify
// some of this header
iRequestId = millis(); // generate a random ID
uint16_t twoByteBuffer;
// FIXME We should also check that there's enough space available to write to, rather
// FIXME than assume there's enough space (as the code does at present)
iUdp.write((uint8_t*)&iRequestId, sizeof(iRequestId));
twoByteBuffer = htons(QUERY_FLAG | OPCODE_STANDARD_QUERY | RECURSION_DESIRED_FLAG);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(1); // One question record
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = 0; // Zero answer records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// and zero additional records
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Build question
const char* start =aName;
const char* end =start;
uint8_t len;
// Run through the name being requested
while (*end)
{
// Find out how long this section of the name is
end = start;
while (*end && (*end != '.') )
{
end++;
}
if (end-start > 0)
{
// Write out the size of this section
len = end-start;
iUdp.write(&len, sizeof(len));
// And then write out the section
iUdp.write((uint8_t*)start, end-start);
}
start = end+1;
}
// We've got to the end of the question name, so
// terminate it with a zero-length section
len = 0;
iUdp.write(&len, sizeof(len));
// Finally the type and class of question
twoByteBuffer = htons(TYPE_A);
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
twoByteBuffer = htons(CLASS_IN); // Internet class of question
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Success! Everything buffered okay
return 1;
}
uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
{
uint32_t startTime = millis();
// Wait for a response packet
while(iUdp.parsePacket() <= 0)
{
if((millis() - startTime) > aTimeout)
return TIMED_OUT;
delay(50);
}
// We've had a reply!
// Read the UDP header
uint8_t header[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
// Check that it's a response from the right server and the right port
if ( (iDNSServer != iUdp.remoteIP()) ||
(iUdp.remotePort() != DNS_PORT) )
{
// It's not from who we expected
return INVALID_SERVER;
}
// Read through the rest of the response
if (iUdp.available() < DNS_HEADER_SIZE)
{
return TRUNCATED;
}
iUdp.read(header, DNS_HEADER_SIZE);
uint16_t header_flags = htons(*((uint16_t*)&header[2]));
// Check that it's a response to this request
if ( ( iRequestId != (*((uint16_t*)&header[0])) ) ||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG) )
{
// Mark the entire packet as read
iUdp.flush();
return INVALID_RESPONSE;
}
// Check for any errors in the response (or in our request)
// although we don't do anything to get round these
if ( (header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK) )
{
// Mark the entire packet as read
iUdp.flush();
return -5; //INVALID_RESPONSE;
}
// And make sure we've got (at least) one answer
uint16_t answerCount = htons(*((uint16_t*)&header[6]));
if (answerCount == 0 )
{
// Mark the entire packet as read
iUdp.flush();
return -6; //INVALID_RESPONSE;
}
// Skip over any questions
for (uint16_t i =0; i < htons(*((uint16_t*)&header[4])); i++)
{
// Skip over the name
uint8_t len;
do
{
iUdp.read(&len, sizeof(len));
if (len > 0)
{
// Don't need to actually read the data out for the string, just
// advance ptr to beyond it
while(len--)
{
iUdp.read(); // we don't care about the returned byte
}
}
} while (len != 0);
// Now jump over the type and class
for (int i =0; i < 4; i++)
{
iUdp.read(); // we don't care about the returned byte
}
}
// Now we're up to the bit we're interested in, the answer
// There might be more than one answer (although we'll just use the first
// type A answer) and some authority and additional resource records but
// we're going to ignore all of them.
for (uint16_t i =0; i < answerCount; i++)
{
// Skip the name
uint8_t len;
do
{
iUdp.read(&len, sizeof(len));
if ((len & LABEL_COMPRESSION_MASK) == 0)
{
// It's just a normal label
if (len > 0)
{
// And it's got a length
// Don't need to actually read the data out for the string,
// just advance ptr to beyond it
while(len--)
{
iUdp.read(); // we don't care about the returned byte
}
}
}
else
{
// This is a pointer to a somewhere else in the message for the
// rest of the name. We don't care about the name, and RFC1035
// says that a name is either a sequence of labels ended with a
// 0 length octet or a pointer or a sequence of labels ending in
// a pointer. Either way, when we get here we're at the end of
// the name
// Skip over the pointer
iUdp.read(); // we don't care about the returned byte
// And set len so that we drop out of the name loop
len = 0;
}
} while (len != 0);
// Check the type and class
uint16_t answerType;
uint16_t answerClass;
iUdp.read((uint8_t*)&answerType, sizeof(answerType));
iUdp.read((uint8_t*)&answerClass, sizeof(answerClass));
// Ignore the Time-To-Live as we don't do any caching
for (int i =0; i < TTL_SIZE; i++)
{
iUdp.read(); // we don't care about the returned byte
}
// And read out the length of this answer
// Don't need header_flags anymore, so we can reuse it here
iUdp.read((uint8_t*)&header_flags, sizeof(header_flags));
if ( (htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN) )
{
if (htons(header_flags) != 4)
{
// It's a weird size
// Mark the entire packet as read
iUdp.flush();
return -9;//INVALID_RESPONSE;
}
iUdp.read(aAddress.raw_address(), 4);
return SUCCESS;
}
else
{
// This isn't an answer type we're after, move onto the next one
for (uint16_t i =0; i < htons(header_flags); i++)
{
iUdp.read(); // we don't care about the returned byte
}
}
}
// Mark the entire packet as read
iUdp.flush();
// If we get here then we haven't found an answer
return -10;//INVALID_RESPONSE;
}