This guide provides intructions to install ISCE2 with Anaconda/Miniconda on a Linux/MacOS machine.
-
Prepare a conda or conda virtual enviroment
conda create -n isce2 python=3.8 conda activate isce2
The following steps will install isce2 to $CONDA_PREFIX.
echo $CONDA_PREFIX
-
Install required packages
conda install -c conda-forge git cmake cython gdal h5py libgdal pytest numpy fftw scipy basemap opencv pybind11 shapely
To compile/install mdx, you will also need
conda install -c conda-forge openmotif openmotif-dev xorg-libx11 xorg-libxt xorg-libxmu xorg-libxft libiconv xorg-libxrender xorg-libxau xorg-libxdmcp
For GPU support, you will need a CUDA compiler, which is usally located at /usr/local/cuda
or can be loaded by module load cuda
. For PyCuAmpcor, GDAL>=3.1 is recommended, in order to use memory map to speed up file I/O.
You will also need C/C++/Fortran compilers. You may use the system provided GNU compilers, or use the ones come with conda,
conda install gcc_linux-64 gxx_linux-64 gfortran_linux-64
Note that a given version of CUDA only supports certain versions of GNU compilers. For example, CUDA 10.1, please use GNU<=7.3.
conda install gcc_linux-64=7.3.0 gxx_linux-64=7.3.0 gfortran_linux-64=7.3.0
Note: for Kamb (with Redhat 7): use the system GNU GCC 4.8.5. Don't use the CONDA-installed GNU compilers.
-
Download the source package
mkdir -p $HOME/tools/src cd $HOME/tools/src git clone https://github.com/isce-framework/isce2.git
-
Compile and install isce2
cd $HOME/tools/src/isce2 mkdir build && cd build cmake .. -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX -DPYTHON_MODULE_DIR=lib/python3.8/site-packages -DCMAKE_CUDA_FLAGS="-arch=sm_60" -DCMAKE_PREFIX_PATH=${CONDA_PREFIX} -DCMAKE_BUILD_TYPE=Release make -j 16 # to use multiple threads make install
-
DCMAKE_INSTALL_PREFIX
is where the package is to be installed. Here, we choose to install to the conda venv directly ($CONDA_PREFIX) such that the paths to isce2 commands/scripts are automatically set up, like other conda packages. -
DPYTHON_MODULE_DIR
is the directory to install python scripts, defined in relative to theDCMAKE_INSTALL_PREFIX
directory. Please check your conda venv python3 version, and set it accordingly, e.g., python3.7 instead of python3.8. One method to check the site-packages directory for your python version is to run a commandpython3 -c 'import site; print(site.getsitepackages())'
-
DCMAKE_CUDA_FLAGS
targets optimizing the GPU code for a specific GPU architecture, e.g., sm_60 for P100, sm_35 for K40, sm_70 for V100. -
DCMAKE_PREFIX_PATH
is for search path(s) of dependencies, such as gdal, fftw. Since we installed all dependencies through conda, we use ${CONDA_PREFIX}. -
DCMAKE_BUILD_TYPE=(None, Debug, Release)
. Some isce2 modules (e.g. PyCuAmpcor) have debugging features which are turned on/off by the -DNDEBUG compilation flag. This flag is not included in Debug build type or not specified, i.e., debugging features are on. It is included in Release build type, and therefore debugging features are turned off. For end users, please use Release build type. -
If cmake cannot locate the desired compilers correctly, you can enforce the choice of compilers by adding
-DCMAKE_C_COMPILER=/path/to/gcc -DCMAKE_CXX_COMPILER=/path/to/g++ -DCMAKE_Fortran_COMPILER=/path/to/gfortran
-
If something is wrong in compilation and you would like to check the details
make VERBOSE=1
- Check and Test
You may check whether ISCE2 is properly installed by
cd $CONDA_PREFIX/bin
ls -ltr
# you should see mdx, and other python apps are installed
cd ../lib/python3.x/site-packages
ls -ltr
# you should see isce2 and an additional link isce
You may try to run
python3 -c 'import isce'
topsApp.py -h
...
Next time, all you need to do to load isce2 is to
codna activate # if you install to the base
conda activate isce2 # if you install to an isce2 venv.
By default, the CUDA modules run on GPU device 0 (currently only one GPU per task is supported). If there are multiple tasks or multiple users sharing the same device, the program will run slow or even crash. If you have multiple GPUs installed (run nvidia-smi
to check), you may spread your tasks to different GPUs, by using CUDA_VISIBLE_DEVICES=n
to select the device, where n=0,1,...
up to the number of GPUs installed. For example, to use device 2,
export CUDA_VISIABLE_DEVICES=2
topsApp.py ...
# or one line
CUDA_VISIBLE_DEVICES=2 topsApp.py ...
-
Install Anaconda or Minoconda. If you only run isce2 with venv, miniconda is recommended.
-
If you prefer, prepare a conda virtual enviroment
conda create -n isce2 python=3.8 conda activate isce2
-
Install required packages
conda install -c conda-forge git scons cython gdal h5py libgdal pytest numpy fftw scipy basemap opencv pybind11 shapely
To compile/install mdx, you will also need
conda install -c conda-forge openmotif openmotif-dev xorg-libx11 xorg-libxt xorg-libxmu xorg-libxft libiconv xorg-libxrender xorg-libxau xorg-libxdmcp
You will need to make a symbolic link for cython3,
cd $CONDA_PREFIX/bin
ln -sf cython cython3
If you plan to use conda installed GNU compilers (note that currently there are some compatibility issues of conda compiler with Redhat 7 systems, don't install gcc_linux-64, .... If you already made the following links, please delete them.)
ln -sf x86_64-conda_cos6-linux-gnu-gcc gcc
ln -sf x86_64-conda_cos6-linux-gnu-g++ g++
ln -sf x86_64-conda_cos6-linux-gnu-gfortran gfortran
ln -sf x86_64-conda_cos6-linux-gnu-ld ld
# for some conda-forge builds (seems no longer an issue with python3.8)
cd $CONDA_PREFIX/lib
ln -sf libzstd.so.1.3.7 libzstd.so.1
-
Download isce2 for github or prepare your own version
# create a directory to save source files mkdir -p ${HOME}/tools/src cd {$HOME}/tools/src # glone a copy from github git clone https://github.com/isce-framework/isce2
The command shall pull a github version of isce2 to your ${HOME}/tools/src/isce2
diectory.
-
Configure a
SConfigISCE
file under, e.g.${HOME}/.isce
directoryPRJ_SCONS_BUILD=$HOME/build/isce_build PRJ_SCONS_INSTALL=$ISCE_HOME LIBPATH=$CONDA_PREFIX/lib CPPPATH=$CONDA_PREFIX/include $CONDA_PREFIX/include/python3.8/ $CONDA_PREFIX/lib/python3.8/site-packages/numpy/core/include $CONDA_PREFIX/include/opencv4 FORTRAN=gfortran CC=gcc CXX=g++ FORTRANPATH=$CONDA_PREFIX/include MOTIFLIBPATH=$CONDA_PREFIX/lib X11LIBPATH=$CONDA_PREFIX/lib MOTIFINCPATH=$CONDA_PREFIX/include X11INCPATH=$CONDA_PREFIX/include RPATH=$CONDA_PREFIX/lib ENABLE_CUDA = True CUDA_TOOLKIT_PATH=/usr/local/cuda # use 'which nvcc' to verify
PRJ_SCONS_BUILD
is a directory to save temporary compiled filesPRJ_SCONS_INSTALL
is where the isce2 will be installed. We use a$ISCE_HOME
to be defined laterLIBPATH
is where to look for the shared libraries, such as gdal, fftwCPPPATH
is where to look for C/C++ head files (#include) for librariesFORTRAN
,CC
,CXX
are the Fortran/C/C++ compilers to be usedMOTIFLIBPATH
...X11INCPATH
are to set lib and include paths for motif and x11 libraries.- for Ubuntu 18.04, set
MOTIFLIBPATH1
andX11LIBPATH
to/usr/lib/x86_64-linux-gnu/
and setMOTIFINCPATH
andX11INCPATH
to/usr/include
. - for Redhat or CentOS 7, set
MOTIFLIBPATH1
andX11LIBPATH
to/lib64
and setMOTIFINCPATH
andX11INCPATH
to/usr/include
. - for conda installed packages, set them as
$CONDA_PREFIX/lib
and$CONDA_PREFIX/include
.
- for Ubuntu 18.04, set
ENABLE_CUDA
=True/False
whether to include some GPU/CUDA accelerated modules. If enabled, please also specifyCUDA_TOOLKIT_PATH
to where CUDA SDK is installed. Some manual configuration might be needed:- CUDA SDK Versions 9 and above are recommended.
- The CUDA compiler 9 & 10 by default targets NVIDIA GPUs with compute capability 3.5 (K40, K80). CUDA 11 uses sm_52 as default. If you prefer to compile CUDA code best suited to the GPU you have, find
env['ENABLESHAREDNVCCFLAG']
in${HOME}/tools/src/isce2/scons_tools/cuda.py
file, find the lineenv['ENABLESHAREDNVCCFLAG'] = '-std=c++11 -shared
, add-arch=sm_35
for K40/K80,-arch=sm_60
for P100,-arch=sm_61
for GTX1080,-arch=sm_70
for V100.
- Some settings for environment variables before compile/install. You need to specify three environment variables
CONDA_PREFIX
where Anaconda3 is installedISCE_HOME
where isce2 will be installedSCONS_CONFIG_DIR
where theSConfigISCE
is located. if they are not set. Check by, e.g.,echo $CONDA_PREFIX
.
For csh
,
setenv ISCE_HOME ${HOME}/tools/isce
setenv SCONS_CONFIG_DIR ${HOME}/.isce
and for bash
,
export ISCE_HOME=${HOME}/tools/isce
export SCONS_CONFIG_DIR=${HOME}/.isce
-
Compile/install isce2
cd ${HOME}/tools/src/isce2 scons install
If successful, you should obtain a compiled isce2 at $ISCE_HOME
or $HOME/tools/isce
.
Some common problems or questions:
- if you use conda installed X11 motif libraries, you might see an errror
libXm.so not found
reported by scons. You may neglect and proceed; these libraries will be linked properly. But if you see error messages about gdal or fftw, please stop and check.
- Set up environment variables to load/usr isce2.
-
use environment module, .e.g.,
module load/unload isce2.mod
where an example ofisce2.mod
is provided below.#%Module module-whatis {Description: ISCE2-github} set root $HOME/tools/isce prepend-path LD_LIBRARY_PATH $root/lib prepend-path LIBRARY_PATH $root/lib prepend-path PATH $root/bin:$root/applications prepend-path PYTHONPATH $HOME/tools:$root:$root/applications:$root/components:$root/library setenv ISCE_HOME $root
Note that in order to import isce
from python, you need to use the isce
as the installation directory name and also set the directory where isce
is located (in above case, $HOME/tools
) to PYTHONPATH
.
-
use a resource file to load as
source isce2.rc
. Forcsh
,# isce2.cshrc setenv ISCE_HOME $HOME/tools/isce setenv PATH $ISCE_HOME/bin\:$ISCE_HOME/applications\:$PATH setenv LD_LIBRARY_PATH $ISCE_HOME/lib\:$LD_LIBRARY_PATH # check whether PYTHONPATH exists if ( ! $?PYTHONPATH ) then setenv PYTHONPATH $HOME\:$ISCE_HOME\:$ISCE_HOME/applications\:$ISCE_HOME/components\:$ISCE_HOME/library else setenv PYTHONPATH $HOME\:$ISCE_HOME\:$ISCE_HOME/applications\:$ISCE_HOME/components\:$ISCE_HOME/library\:$PYTHONPATH endif
For bash
,
# isce2.rc
export ISCE_HOME=$HOME/tools/isce
export PATH=$ISCE_HOME/bin:$ISCE_HOME/applications:$PATH
export LD_LIBRARY_PATH=$ISCE_HOME/lib:$LD_LIBRARY_PATH
export PYTHONPATH=$ISCE_HOME:$ISCE_HOME/applications:$ISCE_HOME/components:$ISCE_HOME/library:$HOME/tools:$PYTHONPATH
- Common questions/problems
Please follow the instructions for Linux. You may need to install xcode or command-line-tools. GPU modules are not supported for MacOSX, unless you use an external GPU with NVIDIA cards. You will then need to install NVIDIA driver and CUDA.
For Apple M1, you may use the regular (x86_64) Conda releases (continue to work with Rosetta 2). Or you may install the native arm64 version from Miniforge.
Example with MacOSX 11.5.2 (Big Sur) and Apple Clang 12.0.5.
-
Prepare a conda or conda virtual enviroment
conda create -n isce2 conda activate isce2
The following steps will install isce2 to $CONDA_PREFIX.
echo $CONDA_PREFIX
-
Install required packages
conda install git cmake cython gdal h5py libgdal pytest numpy fftw scipy basemap opencv
To compile/install mdx, you will also need
conda install openmotif openmotif-dev xorg-libx11 xorg-libxt xorg-libxmu xorg-libxft libiconv xorg-libxrender xorg-libxau xorg-libxdmcp
- Compilers
If you already have Xcode installed,
sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
which clang # show /usr/bin/clang
clang --version # Apple clang version 12.0.5 (clang-1205.0.22.11)
If not, you may install the full version of Xocde, or simply the Command Line Tools,
sudo xcode-select --install
sudo xcode-select --switch /Library/Developer/CommandLineTools
Install gfortran through brew
brew install gfortran
which gfortran # show /usr/local/bin/gfortran
gfortran --version # GNU Fortran (Homebrew GCC 11.2.0) 11.2.0
Or you may simply download the binary from HPC MacOSX: they have pre-compiled versions gfortran-x.x-bin.tar.gz
for all MacOSX systems, including Apple Silicon.
-
Compile and install isce2
cd $HOME/tools/src/isce2 mkdir build && cd build cmake .. -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX -DPYTHON_MODULE_DIR=lib/python3.9/site-packages -DCMAKE_PREFIX_PATH=${CONDA_PREFIX} make -j # to use multiple threads make install
Change cmake options if necessary, e.g., PYTHON_MODULE_DIR
to your installed python version. Enjoy!
Note that after each major MacOSX update, please try to update (or reinstall) Command Line Tools and update Conda.
You may notice warnings such as was built for newer macOS version (11.5) than being linked (11.0)
. It is in general safe to neglect these warnings. To suppress the warnings, you may add -DCMAKE_OSX_DEPLOYMENT_TARGET=11.5
to cmake command line.