-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter.py
104 lines (95 loc) · 3.48 KB
/
filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import pandas as pd
class Filter:
def __init__(self, posters, corr):
self.posters = posters
self.corr = corr
self.search_query = ""
self.n = 5
self._location = ""
self._time=""
self._category=""
self._sub_category=""
self.search_result=""
def reset(self):
self._location = ""
self._time = ""
self._category = ""
self._sub_category = ""
self.search_query=""
def _get_filters(self):
filter_str = self.search_query
if not filter_str:
return ""
filters = filter_str.lower().split(",")
# print("".join([f"(?={filter})" for filter in filters]))
return "".join([f"(?={filter})" for filter in filters])
def filter_by_text_input(self):
filters = self._get_filters()
booleans_author = self.posters.author.str.lower().str.contains(filters)
booleans_title = self.posters.title.str.lower().str.contains(filters)
# booleans_category = self.posters.category.str.lower().str.contains(filters)
return (booleans_author) | (booleans_title)
def get_filter_result(self):
booleans_query = self.filter_by_text_input()
booleans_time = self.posters.time.str.lower().str.contains(self.time, regex=False)
booleans_location = self.posters.location.str.lower().str.contains(self.location, regex=False)
booleans_category = self.posters.category.str.lower().str.contains(self.category, regex=False)
booleans_sub_category = self.posters.category.str.lower().str.contains(self.sub_category, regex=False)
booleans_result = (booleans_query) & (booleans_time) & (booleans_location) & (booleans_category) & (booleans_sub_category)
return self.get_result_by_idx(booleans_result)
def get_result_by_idx(self, idxs):
# Filter Top n results
result = self.posters.loc[idxs].iloc[: self.n]
self.search_result = result
return self.search_result
def filter_by_similarity(self, search_result):
if search_result.empty:
return
query_idx = search_result.index[0]
poster_idxs = self.corr[query_idx, :].argsort()[::-1][1: self.n + 1] # Top N exclude the paper itself
result = self.posters.iloc[poster_idxs]
result["Similarity Score"] = self.corr[query_idx, poster_idxs]
cols = result.columns.values.tolist()
cols.insert(0, cols.pop())
result = result.reindex(columns= cols)
return result
@property
def location(self):
return self._location
@property
def time(self):
return self._time
@property
def category(self):
return self._category
@property
def sub_category(self):
return self._sub_category
@location.setter
def location(self, x):
if x=="All":
self._location=""
else:
self._location=x.lower()
@time.setter
def time(self, x):
if x=="All":
self._time=""
else:
self._time=x.lower()
@category.setter
def category(self, x):
if x=="All":
self._category=""
else:
self._category=x.lower()
@category.setter
def sub_category(self, x):
if x=="All":
self._sub_category=""
else:
self._sub_category=x.lower()
def feel_lucky(self):
self.search_result=self.posters.sample(n=1)
print('Feeling Lucky!!')
return "test"