-
Notifications
You must be signed in to change notification settings - Fork 3.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
线性无关的定义是错误的 #630
Comments
您的邮件已收到,我会尽快回复,谢谢。
|
您好,我是孟贇祥,您的邮件我已经收到。我会尽快处理麻烦您了。
|
AFAIK, the definition of linear independence in the book is correct. And actually, your argument has a flaw, with |
不存在一组非全0解 |
这是来自QQ邮箱的自动回复邮件。
您好,您给我发送的邮件已收到。
|
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
定义错误 + 385页
𝜆1, 𝜆2, ⋯ , 𝜆𝑀, 满足𝜆1𝒗1 + 𝜆2𝒗2 +⋯+ 𝜆𝑀𝒗𝑀 = 0, 则必然 𝜆1 = 𝜆2 = ⋯ = 𝜆𝑀 =
0, 那么{𝒗1, 𝒗2, ⋯ , 𝒗𝑀}是线性无关的, 也称为线性独立的.
如果线性无关是上面的定义,则任意一组向量都是线性无关的,实际上线性无关的定义应该是不存在一组标量使得一组向量形成某种线性关系(或者说这组标量可以使得这组向量之和为0),则说明这一组向量是线性无关的。
另外,老师,我觉得这本书很多地方写的太跳跃了,而且对为什么要这么做的前提说明不充分,目标解释不足,所以读起来还是比较吃力的,直接就带入了太多的专业术语,但是关于这些专业术语的作用,产生背景,介绍的不足,多个专业术语之间联结起来之后产生的结果就更不好理解了
The text was updated successfully, but these errors were encountered: