-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
236 lines (181 loc) · 8.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import numpy as np
from torch import nn, optim
import torch.nn.functional as F
from torchvision import datasets, models, transforms
from torch.utils.data import DataLoader
from collections import OrderedDict
from PIL import Image
from torch import Tensor
import shutil
import argparse
import os
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def validation(model, testloader, criterion, device):
test_loss = 0
accuracy = 0
model.to(device)
for images, labels in testloader:
images, labels = images.to(device), labels.to(device)
# images.resize_(images.shape[0], 3, 224, 224)
output = model.forward(images)
test_loss += criterion(output, labels).item()
ps = torch.exp(output)
equality = (labels.data == ps.max(dim=1)[1])
accuracy += equality.type(torch.FloatTensor).mean()
return test_loss, accuracy
def train(model, trainloader, validloader, epochs, print_every, criterion, optimizer, arch="vgg16", device='cuda', model_dir="models"):
epochs = epochs
print_every = print_every
steps = 0
# Change to train mode if not already
model.train()
# change to cuda
model.to(device)
best_accuracy = 0
for e in range(epochs):
running_loss = 0
for (images, labels) in trainloader:
steps += 1
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
# Forward and backward passes
outputs = model.forward(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
# Make sure network is in eval mode for inference
model.eval()
# Turn off gradients for validation, saves memory and computations
with torch.no_grad():
validation_loss, accuracy = validation(model, validloader, criterion, device)
print("Epoch: {}/{}.. ".format(e+1, epochs),
"Training Loss: {:.3f}.. ".format(running_loss/print_every),
"Validation Loss: {:.3f}.. ".format(validation_loss/len(validloader)),
"Validation Accuracy: {:.3f}".format((accuracy/len(validloader))*100))
model.train()
running_loss = 0
is_best = accuracy > best_accuracy
best_accuracy = max(accuracy, best_accuracy)
save_checkpoint({
'epoch': epochs,
'classifier': model.classifier,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'class_idx_mapping': model.class_idx_mapping,
'arch': arch,
'best_accuracy': (best_accuracy/len(validloader))*100
}, is_best, model_dir, 'checkpoint.pth')
def save_checkpoint(state, is_best=False, model_dir="models", filename='checkpoint.pth'):
torch.save(state, os.path.join(model_dir, filename))
if is_best:
shutil.copyfile(filename, os.path.join(model_dir,'model_best.pth'))
def check_accuracy_on_test(testloader, model):
correct = 0
total = 0
model.to('cuda')
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to('cuda'), labels.to('cuda')
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
return 100 * correct / total
def load_data_folder(data_folder="data"):
"""
Loads the dataset into a dataloader.
Arguments:
data_folder: Path to the folder where data resides. Should have two sub folders named "train" and "valid".
Returns:
train_dataloader: Train dataloader iterator.
valid_dataloader: Validation dataloader iterator.
"""
train_dir = os.path.join(data_folder, "train")
valid_dir = os.path.join(data_folder, "valid")
# Define transforms for the training, validation, and testing sets
train_transforms = transforms.Compose([
transforms.RandomRotation(30),
transforms.RandomResizedCrop(size=224),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
validation_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# Load the datasets with ImageFolder
train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms)
validation_dataset = datasets.ImageFolder(valid_dir, transform=validation_transforms)
# Using the image datasets and the transforms, define the dataloaders
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=64, num_workers=4)
valid_dataloader = DataLoader(validation_dataset, shuffle=True, batch_size=64, num_workers=4)
return train_dataloader, valid_dataloader, train_dataset.class_to_idx
def build_model(arch="vgg16", hidden_units=4096, class_idx_mapping=None):
my_local = dict()
exec("model = models.{}(pretrained=True)".format(arch), globals(), my_local)
model = my_local['model']
last_child = list(model.children())[-1]
if type(last_child) == torch.nn.modules.linear.Linear:
input_features = last_child.in_features
elif type(last_child) == torch.nn.modules.container.Sequential:
input_features = last_child[0].in_features
for param in model.parameters():
param.requires_grad = False
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(input_features, hidden_units)),
('relu', nn.ReLU()),
('dropout', nn.Dropout(p=0.5)),
('fc2', nn.Linear(hidden_units, 102)),
('output', nn.LogSoftmax(dim=1))
]))
model.classifier = classifier
model.class_idx_mapping = class_idx_mapping
return model
def main():
ap = argparse.ArgumentParser()
ap.add_argument("data_dir", help="Directory containing the dataset.",
default="data", nargs="?")
VALID_ARCH_CHOICES = ("vgg16", "vgg13", "densenet121")
ap.add_argument("--arch", help="Model architecture from 'torchvision.models'. (default: vgg16)", choices=VALID_ARCH_CHOICES,
default=VALID_ARCH_CHOICES[0])
ap.add_argument("--hidden_units", help="Number of units the hidden layer should consist of. (default: 4096)",
default=4096, type=int)
ap.add_argument("--learning_rate", help="Learning rate for Adam optimizer. (default: 0.001)",
default=0.001, type=float)
ap.add_argument("--epochs", help="Number of iterations over the whole dataset. (default: 3)",
default=3, type=int)
ap.add_argument("--gpu", help="Use GPU or CPU for training",
action="store_true")
ap.add_argument("--model_dir", help="Directory which will contain the model checkpoints.",
default="models")
args = vars(ap.parse_args())
os.system("mkdir -p " + args["model_dir"])
(train_dataloader, valid_dataloader, class_idx_mapping) = load_data_folder(data_folder=args["data_dir"])
model = build_model(arch=args["arch"], hidden_units=args["hidden_units"], class_idx_mapping=class_idx_mapping)
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=args["learning_rate"])
device = None
if args["gpu"]:
device = "cuda"
else:
device = "cpu"
train(model=model,
trainloader=train_dataloader,
validloader=valid_dataloader,
epochs=args["epochs"],
print_every=20,
criterion=criterion,
optimizer=optimizer,
arch=args["arch"],
device=device,
model_dir=args["model_dir"])
if __name__ == '__main__':
main()