-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2a - dataset generation.py
162 lines (124 loc) · 5.33 KB
/
2a - dataset generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
'''
This code generates the dataset used for the avalanche generation dataset
This code is absolutely, and in no way, shape, or form, designed to mimic any real process
The resulting dataset should, in no way, be considered to be real or used for any
real avalanche prediction. It is pure fiction, in order to generate learning material
for teaching machine learning techniques
'''
import numpy as np
import numpy.random as rng
import pandas
import statsmodels.formula.api as smf
import graphing
import sklearn.model_selection
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
weak_layer_safeties = []
class SnowCondition:
def __init__(self, surface_hoar:float, fresh_thickness:float, wind:float, weak_layers:int, tracked_out:bool) -> None:
self.surface_hoar = surface_hoar
self.fresh_thickness = fresh_thickness
self.wind = wind
self.weak_layers = weak_layers
self.tracked_out = tracked_out
def get_avalanche(self, visitors:int) -> bool:
'''
Determine if an avalanche takes place
'''
bias = 0.35 # fudge factor to get a fairly even split of avalanche and non-avalanche days
def logit(val):
return 1- bias/(1+np.exp(-val))
# convert wind from km/h to a risk
wind_safety = logit((self.wind-20)*0.5)
top_safety = logit(self.surface_hoar - 5)
weak_layer_safety = logit(self.weak_layers - 5)
visitor_safety = logit((visitors - 5) * (self.fresh_thickness - 5)/2)
# thickness_safety = 1 - bias / (1+np.exp(-(self.fresh_thickness - 5)/2))
# visitor_safety = (visitor_safety + thickness_safety)/2
threshold = wind_safety * top_safety * weak_layer_safety * visitor_safety + rng.standard_normal() * 0.1
weak_layer_safeties.append(threshold < 0.5)
return threshold < 0.5
n_samples = int(365.25*3)
rng.seed(1)
snow_cond = []
no_visitors = []
avalanche = []
for i in range(n_samples):
condition = SnowCondition(
surface_hoar = rng.randint(0,8) + rng.standard_normal() * 2,
fresh_thickness = rng.randint(0,8) + rng.standard_normal() * 2,
wind = rng.randint(0,41), #restrict(rng.standard_normal() * 10 + 20,0,80),
weak_layers = rng.randint(0,11),
tracked_out = rng.randint(0,2))
visitors = rng.randint(10)
snow_cond.append(condition)
no_visitors.append(visitors)
avalanche.append(int(condition.get_avalanche(visitors)))
df = pandas.DataFrame(dict(
avalanche = avalanche,
no_visitors = no_visitors,
surface_hoar = [c.surface_hoar for c in snow_cond],
fresh_thickness = [c.fresh_thickness for c in snow_cond],
wind = [c.wind for c in snow_cond],
weak_layers = [c.weak_layers for c in snow_cond],
tracked_out = [c.tracked_out for c in snow_cond])
)
# Patch to avoid negative snow
df.fresh_thickness = df.fresh_thickness - df.fresh_thickness.min()
# preview
print(df.head(20))
print(np.average(weak_layer_safeties))
# Save
df.to_csv("Data/avalanche.csv", sep="\t")
# graph
if False:
graphing.multiple_histogram(df, 'no_visitors', 'avalanche', show=True)
graphing.multiple_histogram(df, 'surface_hoar', 'avalanche', show=True)
graphing.multiple_histogram(df, 'fresh_thickness', 'avalanche', show=True)
graphing.multiple_histogram(df, 'wind', 'avalanche', show=True)
graphing.multiple_histogram(df, 'weak_layers', 'avalanche', show=True)
graphing.multiple_histogram(df, 'tracked_out', 'avalanche', show=True)
train, test = sklearn.model_selection.train_test_split(df, test_size=0.2, random_state=10, shuffle=True)
def truth_table(predictions):
correct = test.avalanche == predictions
tp = np.sum(correct & test.avalanche) / test.shape[0]
tn = np.sum(correct & np.logical_not(test.avalanche)) / test.shape[0]
fp = np.sum(np.logical_not(correct) & test.avalanche) / test.shape[0]
fn = np.sum(np.logical_not(correct) & np.logical_not(test.avalanche)) / test.shape[0]
# print(predictions)
print("---")
print(accuracy_score(test.avalanche, predictions))
print("tp", tp)
print("tn", tn)
print("fp", fp)
print("fn", fn)
# Example logistic model
print("All features")
model = smf.logit("avalanche ~ no_visitors + surface_hoar + fresh_thickness + wind + weak_layers + tracked_out", train).fit()
predictions = model.predict(test) > 0.5
truth_table(predictions)
# Example logistic model
print("Ideal")
model = smf.logit("avalanche ~ no_visitors + fresh_thickness + no_visitors * fresh_thickness + surface_hoar + wind + weak_layers", train).fit()
predictions = model.predict(test) > 0.5
truth_table(predictions)
print(model.summary())
# Simple model
print("Simple")
model = smf.logit("avalanche ~ weak_layers", train).fit()
predictions = model.predict(test) > 0.5
truth_table(predictions)
# Example random forest
scaler = StandardScaler()
features = ["no_visitors", "surface_hoar", "fresh_thickness", "wind", "weak_layers", "tracked_out"]
train[features] = scaler.fit_transform(train[features])
test[features] = scaler.transform(test[features])
clf = RandomForestClassifier(n_estimators=500, random_state=1, verbose=False)
X_train = train[features]
y_train = train["avalanche"]
clf.fit(X_train,y_train)
X_test = test[features]
y_pred = clf.predict(X_test)
print("Random Forest")
truth_table(y_pred)