-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
166 lines (139 loc) · 4.99 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import math
import os
import random
from collections import defaultdict
import numpy as np
import torch
from datasets import load_dataset, set_caching_enabled
from model.deberta_v2_multiple_choice import DebertaV2ForMultipleChoice
from transformers import (
AutoModelForMultipleChoice,
AutoTokenizer,
EarlyStoppingCallback,
Trainer,
TrainingArguments,
)
from data_util import DataCollatorForMultipleChoice
parser = argparse.ArgumentParser()
parser.add_argument("--model_name")
parser.add_argument(
"--input_mode", default="full"
) # no_context, no_question, or option_only
parser.add_argument("--train", action="store_true")
args = parser.parse_args()
os.environ["WANDB_DISABLED"] = "true"
set_caching_enabled(False)
set_seed = 2022
random.seed(set_seed)
os.environ["PYTHONHASHSEED"] = str(set_seed)
np.random.seed(set_seed)
torch.manual_seed(set_seed)
torch.cuda.manual_seed(set_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
dataset_dir = "dataset"
result_dir = "results"
if not os.path.exists(result_dir):
os.mkdir(result_dir)
datasets = load_dataset(
"dataset",
data_files={
"train": "train.jsonl",
"validation": "dev.jsonl",
"test": "test.jsonl",
},
streaming=True,
)
model_checkpoint, batch_size, learning_rate = {
"bert-base": ("bert-base-uncased", 24, 3e-5),
"bert-large": ("bert-large-uncased", 12, 1e-5),
"roberta-base": ("roberta-base", 16, 3e-5),
"roberta-large": ("roberta-large", 8, 1e-5),
"roberta-large-race": ("LIAMF-USP/roberta-large-finetuned-race", 8, 1e-5),
"deberta-base": ("microsoft/deberta-v3-base", 16, 3e-5),
"deberta-large": ("microsoft/deberta-v3-large", 8, 1e-5),
}[args.model_name]
num_epochs = 5
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
def preprocess(examples):
# Repeat each first sentence four times to go with the four possibilities of second sentences.
if args.input_mode in ["no_context", "option_only"]:
first_sentences = [[""] * 4 for context in examples["document"]]
else:
first_sentences = [[context] * 4 for context in examples["document"]]
# Grab all second sentences possible for each context.
question_headers = examples["question"]
if args.input_mode in ["no_question", "option_only"]:
second_sentences = examples["options"]
else:
second_sentences = [
[f"{q} {opt}" for opt in opts]
for q, opts in zip(examples["question"], examples["options"])
]
# Flatten everything
first_sentences = sum(first_sentences, [])
second_sentences = sum(second_sentences, [])
# Tokenize
tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True)
# Un-flatten
encoded_data = {
k: [v[i : i + 4] for i in range(0, len(v), 4)]
for k, v in tokenized_examples.items()
}
encoded_data["labels"] = examples["gold_label"]
return encoded_data
def compute_metrics(eval_predictions):
predictions, label_ids = eval_predictions
preds = np.argmax(predictions, axis=1)
return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}
datasets = datasets.with_format("torch")
encoded_datasets = datasets.map(preprocess, batched=True)
train_size = len([x for x in datasets["train"]])
test_size = len([x for x in datasets["test"]])
model_name = model_checkpoint.split("/")[-1]
folder_name = os.path.join(
f"{result_dir}", f"{args.model_name}_{set_seed}_{args.input_mode}"
)
train_args = TrainingArguments(
folder_name,
evaluation_strategy="steps", # or "epoch"
eval_steps=200,
save_steps=200,
learning_rate=learning_rate or 1e-5,
seed=set_seed,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
gradient_accumulation_steps=3,
# num_train_epochs=10, # or 5
max_steps=math.ceil(train_size * num_epochs / batch_size),
weight_decay=0.01,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
)
if "deberta" in model_checkpoint:
model_module = DebertaV2ForMultipleChoice
else:
model_module = AutoModelForMultipleChoice
trainer = Trainer(
model=model_module.from_pretrained(model_checkpoint),
args=train_args,
train_dataset=encoded_datasets["train"],
eval_dataset=encoded_datasets["validation"],
tokenizer=tokenizer,
data_collator=DataCollatorForMultipleChoice(tokenizer),
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
if args.train:
trainer.train()
res = trainer.predict(encoded_datasets["test"])
print(f"accuracy:\t{res[2]['test_accuracy']}")
# consistency
passage_ids = defaultdict(list)
for pred, d in zip(res[0], datasets["test"]):
passage_ids[d["question_id"].split("_")[0]].append(
d["gold_label"] == np.argmax(pred)
)
passage_wise_results = [1 if len(v) == sum(v) else 0 for v in passage_ids.values()]
print(f"consistency:\t{sum(passage_wise_results)/len(passage_wise_results)}")