Skip to content

Latest commit

 

History

History
46 lines (41 loc) · 1.75 KB

README.md

File metadata and controls

46 lines (41 loc) · 1.75 KB

train_coqui_tts_ita

My guide to create an italian TTS with Coqui

Prepare the enviroment

  • clone this repo and go with a terminal inside
  • create a venv
python3.8 -m venv venv
source ven/bin/activate
# or for fish shell
source ven/bin/activate.fish
  • clone the coqui repo (I use c63bb481e95bd4a1ff978947d8e3e6c0bfb4177f sha version) and install all libs
git clone https://github.com/coqui-ai/TTS.git
cd TTS
pip install -r requirements.txt
python setup.py install
cd ..

Train the model

  • modify the train_glowtts.py with the correct dataset_path and output_path, eventually change the batch size if you do not have nought ram into GPU
# activate venv
PYTORCH_CUDA_ALLOC_CONF="max_split_size_mb:25" CUDA_VISIBLE_DEVICES=1 python src/train_glowtts.py

Use trained model

  • predict one text from commandline
CUDA_VISIBLE_DEVICES=0 tts --text "Ciao Pippo" --model_path "OUTPUT_PATH/best_model.pth.tar" --config_path "OUTPUT_PATH/config.json"
  • run a prediction server to play with the trained model
CUDA_VISIBLE_DEVICES=0 tts-server --model_path "OUTPUT_PATH/best_model.pth.tar" --config_path "OUTPUT_PATH/config.json"

Results

Model Dataset
glowtts male-LJSpeech-italian
glowtts female-LJSpeech-italian
vits male-LJSpeech-italian
vits female-LJSpeech-italian