forked from uclaml/Padam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cnn_test_cifar100.py
216 lines (173 loc) · 7.25 KB
/
run_cnn_test_cifar100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from models import *
from utils import progress_bar
from torch.autograd import Variable
from torch.optim.lr_scheduler import MultiStepLR
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.optim.lr_scheduler import CosineAnnealingLR
import json
from copy import deepcopy
parser = argparse.ArgumentParser(description='PyTorch CIFAR100 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--method', '-m', help='optimization method')
parser.add_argument('--net', '-n', help='network archtecture')
parser.add_argument('--partial', default=1/8, type=float, help='partially adaptive parameter p in Padam')
parser.add_argument('--wd', default=5e-4, type=float, help='weight decay')
parser.add_argument('--Nepoch', default=200, type=int, help='number of epoch')
parser.add_argument('--beta1', default=0.9, type=float, help='beta1')
parser.add_argument('--beta2', default=0.999, type=float, help='beta2')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
train_errs = []
test_errs = []
train_losses = []
test_losses = []
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276]),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276]),
])
trainset = torchvision.datasets.CIFAR100(root='./data/CIFAR100', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR100(root='./data/CIFAR100', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/cnn_cifar100_'+args.method)
model = checkpoint['model']
start_epoch = checkpoint['epoch']
train_losses = checkpoint['train_losses']
test_losses = checkpoint['test_losses']
train_errs = checkpoint['train_errs']
test_errs = checkpoint['test_errs']
else:
print('==> Building model..')
if args.net == 'vggnet':
from models import vgg
model = vgg.VGG('VGG16', num_classes = 100)
elif args.net == 'resnet':
from models import resnet
model = resnet.ResNet18(num_classes = 100)
elif args.net == 'wideresnet':
from models import wideresnet
model = wideresnet.WResNet_cifar10(num_classes = 100, depth=16, multiplier=4)
else:
print ('Network undefined!')
if use_cuda:
model.cuda()
model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
betas = (args.beta1, args.beta2)
if args.method == 'sgdm':
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum= 0.9, weight_decay = args.wd)
elif args.method == 'adam':
import Adam
optimizer = Adam.Adam(model.parameters(), lr=args.lr, weight_decay = args.wd, betas = betas)
elif args.method == 'adamw':
import AdamW
optimizer = AdamW.AdamW(model.parameters(), lr=args.lr, weight_decay = args.wd, betas = betas)
elif args.method == 'amsgrad':
import Adam
optimizer = Adam.Adam(model.parameters(), lr=args.lr, amsgrad = True, weight_decay = args.wd, betas = betas)
elif args.method == 'padam':
import Padam
optimizer = Padam.Padam(model.parameters(), lr=args.lr, partial = args.partial, weight_decay = args.wd, betas = betas)
else:
print ('Optimizer undefined!')
scheduler = MultiStepLR(optimizer, milestones=[100,150], gamma=0.1)
for epoch in range(start_epoch+1, args.Nepoch+1):
scheduler.step()
print ('\nEpoch: %d' % epoch, ' Learning rate:', scheduler.get_lr())
model.train() # Training
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
def closure():
outputs = model(inputs)
loss = criterion(outputs, targets)
return loss
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step(closure)
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.0/total*float(correct), correct, total))
# Compute training error
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
train_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.0/total*(correct), correct, total))
train_errs.append(1 - correct/total)
train_losses.append(train_loss/(batch_idx+1))
model.eval() # Testing
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.0/total*(correct), correct, total))
test_errs.append(1 - correct/total)
test_losses.append(test_loss/(batch_idx+1))
# Save checkpoint
acc = 100.0/total*(correct)
if acc > best_acc:
print('Saving..')
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
state = {
'model': model,
'epoch': epoch,
'train_errs':train_errs,
'test_errs':test_errs,
'train_losses':train_losses,
'test_losses':test_losses
}
torch.save(state, './checkpoint/cnn_cifar100_' + args.method)
best_acc = acc