forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBinaryMulDivKernel.cu
92 lines (81 loc) · 3.14 KB
/
BinaryMulDivKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/BinaryOps.h>
#include <c10/cuda/CUDAGuard.h>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native {
template<typename scalar_t, typename accscalar_t>
struct MulScalarFunctor {
MulScalarFunctor(accscalar_t b_): b(b_) {}
__device__ scalar_t operator() (scalar_t a) const {
return a * b;
}
private:
accscalar_t b;
};
template<typename scalar_t>
struct DivFunctor {
__device__ scalar_t operator() (scalar_t a, scalar_t b) const {
return a / b;
}
};
template<typename scalar_t>
struct MulFunctor {
__device__ scalar_t operator() (scalar_t a, scalar_t b) const {
return a * b;
}
};
// Workaround for the error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
template<>
struct MulFunctor<bool> {
__device__ bool operator() (bool a, bool b) const {
return a && b;
}
};
void div_kernel_cuda(TensorIterator& iter) {
if (!isIntegralType(iter.common_dtype(), /*includeBool*/ false) && iter.is_cpu_scalar(2)) {
// optimization for floating-point types: if the second operand is a CPU
// scalar, compute a * reciprocal(b). Note that this may lose one bit of
// precision compared to computing the division.
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "div_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto inv_b = accscalar_t(1.0) / iter.scalar_value<accscalar_t>(2);
iter.remove_operand(2);
MulScalarFunctor<scalar_t, decltype(inv_b)> f(inv_b);
gpu_kernel(iter, f);
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(kHalf, kBFloat16, iter.common_dtype(), "div_cuda", [&]() {
DivFunctor<scalar_t> f;
gpu_kernel_with_scalars(iter, f);
});
}
}
void mul_kernel_cuda(TensorIterator& iter) {
if (!isIntegralType(iter.common_dtype(), /*includeBool*/ true) &&
(iter.is_cpu_scalar(1) || iter.is_cpu_scalar(2))) {
//if common dtype is half the scalar constant can overflow in half precision, and yet the result can
//still be representable in the half dtype. Cast scalar to acc_type to have better accuracy
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(kHalf, kBFloat16, iter.common_dtype(), "mul_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
int scalar_arg = iter.is_cpu_scalar(1) ? 1 : 2;
auto b = iter.scalar_value<accscalar_t>(scalar_arg);
iter.remove_operand(scalar_arg);
const cuda::OptionalCUDAGuard device_guard(device_of(iter.tensor(1)));
MulScalarFunctor<scalar_t, decltype(b)> f(b);
gpu_kernel(iter, f);
});
} else {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(kHalf, kBFloat16, kBool, iter.common_dtype(), "mul_cuda", [&]() {
MulFunctor<scalar_t> f;
gpu_kernel_with_scalars(iter, f);
});
}
}
REGISTER_DISPATCH(div_stub, &div_kernel_cuda);
REGISTER_DISPATCH(mul_stub, &mul_kernel_cuda);
}} // namespace at::native