forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBinaryMiscOpsKernels.cu
38 lines (30 loc) · 1.27 KB
/
BinaryMiscOpsKernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include <ATen/Dispatch.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/BinaryOps.h>
// NOTE: CUDA on Windows requires that the enclosing function
// of a __device__ lambda not have internal linkage.
namespace at { namespace native {
void smooth_l1_kernel_cuda(TensorIterator& iter, double beta) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "smooth_l1_cuda", [&iter, beta]() {
scalar_t beta_val(beta);
gpu_kernel(iter, [beta_val] GPU_LAMBDA (scalar_t a, scalar_t b) -> scalar_t {
auto z = ::abs(a - b);
return z < beta_val ? scalar_t(0.5) * z * z / beta_val : z - scalar_t(0.5) * beta_val;
});
});
}
void mse_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "mse_cuda", [&]() {
gpu_kernel(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
auto diff = a - b;
return diff * diff;
});
});
}
REGISTER_DISPATCH(smooth_l1_stub, &smooth_l1_kernel_cuda);
REGISTER_DISPATCH(mse_stub, &mse_kernel_cuda);
// DO NOT ADD ANY NEW KERNELS HERE
// CUDA compilation times grow quickly. It's perfectly acceptable to have a file per kernel.
}} // namespace at::native