-
Notifications
You must be signed in to change notification settings - Fork 0
/
object-detection-tracking.py
97 lines (76 loc) · 3.16 KB
/
object-detection-tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# теперь нужно отправить две координаты центра масс объекта
# import the necessary packages
import serial
import struct
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2
import numpy as np
ser = serial.Serial('/dev/ttyACM0', 9600) # Yours could be ACM0 or it could be something else.
time.sleep(2) # this is required because the arduino resets when a serial connection is established
def my_map(x, in_min, in_max, out_min, out_max):
return int((x-in_min) * (out_max-out_min) / (in_max-in_min) + out_min)
# initialize the camera and grab a reference to the raw camera capture
camera = PiCamera()
camera.resolution = (320, 240)
camera.framerate = 10
camera.hflip = True
rawCapture = PiRGBArray(camera, size=(320, 240))
# allow the camera to warmup
time.sleep(0.1)
# capture frames from the camera
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
# grab the raw NumPy array representing the image, then initialize the timestamp
# and occupied/unoccupied text
image = frame.array
blur = cv2.blur(image, (3,3))
#hsv to complicate things, or stick with BGR
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
thresh = cv2.inRange(hsv, np.array((152,168,59)), np.array((180,255,255)))
#lower = np.array([12,178,61],dtype="uint8")
#upper = np.array([225,88,50], dtype="uint8")
#upper = np.array([210,90,70], dtype="uint8")
# lower_red = np.array([152,168,59])
# upper_red = np.array([180,255,255])
# thresh = cv2.inRange(blur, lower, upper)
thresh2 = thresh.copy()
# find contours in the threshold image
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
# contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# finding contour with maximum area and store it as best_cnt
max_area = 0
best_cnt = 10
for cnt in contours:
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
best_cnt = cnt
# finding centroids of best_cnt and draw a circle there
M = cv2.moments(best_cnt)
posX, posY = int(M['m10']/M['m00']), int(M['m01']/M['m00'])
#if best_cnt>1:
if posX == 0 and posY == 0:
posX = int(camera.resolution[0]/2)
posY = int(camera.resolution[1]/2)
cv2.circle(blur,(posX,posY),10,(255,0,0),-1)
## ser.write(struct.pack('>2H', posX, posY))
mapX = my_map(posX, 0, 320, 0, 255)
mapY = my_map(posY, 0, 240, 0, 255)
## if frame % 30 == 0:
## print(frame)
ser.write(struct.pack('>2B', mapX, mapY))
## ser.write(struct.pack('>H', mapX))
## ser.write(struct.pack('>H', mapY))
## ser.write(struct.pack('>i', posX))
print(mapX, mapY)
# show the frame
cv2.imshow("Frame", blur)
#cv2.imshow('thresh',thresh2)
key = cv2.waitKey(1) & 0xFF
# clear the stream in preparation for the next frame
rawCapture.truncate(0)
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break