forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
266 lines (226 loc) · 10.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..._utils import pad_vocab_size
from ...functional import (Tensor, is_gated_activation, non_gated_version, recv,
send)
from ...layers import (MLP, MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, LayerNorm, MoeConfig,
PositionEmbeddingType)
from ...lora_manager import LoraBuildConfig, use_lora
from ...module import Module
from ...quantization import QuantMode
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
PretrainedConfig)
def MLPFactory(hidden_size,
ffn_hidden_size,
hidden_act,
bias=True,
dtype=None,
moe_config: MoeConfig = MoeConfig(),
tp_group=None,
tp_size=1,
tp_rank=0,
quant_mode=QuantMode(0)):
if moe_config.has_moe():
return MOE(moe_config,
hidden_size,
ffn_hidden_size,
hidden_act,
bias,
dtype,
tp_group,
tp_size,
tp_rank,
quant_mode=quant_mode)
MLPClass = GatedMLP if is_gated_activation(hidden_act) else MLP
hidden_act = non_gated_version(hidden_act)
return MLPClass(
hidden_size,
ffn_hidden_size,
hidden_act,
bias,
dtype,
tp_group,
tp_size,
quant_mode,
)
class GPTDecoderLayer(Module):
def __init__(self, config: PretrainedConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
tp_rank = config.mapping.tp_rank
self.input_layernorm = LayerNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
num_layers=config.num_hidden_layers,
apply_query_key_layer_scaling=config.apply_query_key_layer_scaling,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
position_embedding_type=config.position_embedding_type,
rotary_embedding_percentage=config.rotary_pct,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
bias=config.bias,
tp_group=tp_group,
tp_size=tp_size,
tp_rank=tp_rank,
quant_mode=config.quant_mode)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
moe_config = MoeConfig()
if config.moe_num_experts > 1:
moe_config = MoeConfig(
config.moe_num_experts,
config.moe_top_k,
config.moe_tp_mode,
config.moe_normalization_mode,
)
self.mlp = MLPFactory(hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.bias,
moe_config=moe_config,
tp_group=tp_group,
tp_size=tp_size,
tp_rank=tp_rank,
quant_mode=config.quant_mode)
self.post_layernorm = LayerNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None):
assert isinstance(hidden_states, Tensor)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params)
if use_cache:
attention_output, presents = attention_output
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class GPTModel(Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.mapping = config.mapping
self.position_embedding_type = config.position_embedding_type
if config.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
if config.position_embedding_type == PositionEmbeddingType.learned_absolute:
self.position_embedding = Embedding(
num_embeddings=config.max_position_embeddings,
embedding_dim=config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(GPTDecoderLayer, config)
if config.mapping.is_last_pp_rank():
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(self,
input_ids,
position_ids,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table=None,
prompt_tasks=None,
prompt_vocab_size=None,
lora_params=None):
if self.mapping.is_first_pp_rank():
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
hidden_states = hidden_states + self.position_embedding(
position_ids)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers(hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class GPTForCausalLM(DecoderModelForCausalLM):
def __init__(self, config: PretrainedConfig):
self.check_config(config)
transformer = GPTModel(config)
if config.mapping.is_last_pp_rank():
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
super().__init__(config, transformer, lm_head)
def check_config(self, config: PretrainedConfig):
config.set_if_not_exist('bias', True)
config.set_if_not_exist('apply_query_key_layer_scaling', False)
config.set_if_not_exist('rotary_pct', 1.0)
config.set_if_not_exist('rotary_base', 10000.0)
config.set_if_not_exist('rotary_scaling', None)
config.set_if_not_exist('moe_num_experts', 0)
config.set_if_not_exist('moe_top_k', 0)
config.set_if_not_exist('moe_tp_mode',
MoeConfig.ParallelismMode.TENSOR_PARALLEL)
config.set_if_not_exist(
'moe_normalization_mode',
MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE)
def use_lora(self, lora_config: LoraBuildConfig):
use_lora(self, lora_config)