-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpgd_attack.py
executable file
·164 lines (130 loc) · 5.68 KB
/
pgd_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model as module_arch
from metrics.evaluate_tDCF_asvspoof19_func import evaluate_tdcf_eer
from parse_config import ConfigParser
from pathlib import Path
from collections import defaultdict
from functools import reduce
import numpy as np
from numpy import inf
from data_loader.data_loaders import SpoofDataLoaderBalanceSample
torch.manual_seed(1234) #cpu
torch.cuda.manual_seed(1234) #gpu
np.random.seed(1234) #numpy
# random.seed(1234) #random and transforms
torch.backends.cudnn.benchmark = True
MIN_N_FRAMES = 600
label_dict = {"spoof": 0, "bonafide": 1}
def pgd_linf_rand(model, X, y, epsilon, alpha, num_iters, restarts, loss_fn):
""" Construct PGD adversarial examples on the samples X."""
max_loss = torch.zeros(y.shape[0]).to(y.device)
max_delta = torch.zeros_like(X)
for i in range(restarts):
delta = torch.rand_like(X, requires_grad=True)
delta.data = delta.data * 2 * epsilon - epsilon # [-e, e]
for t in range(num_iters):
# print("-"*100)
loss = loss_fn(model(X + delta), y).mean()
loss.backward()
delta.data = (delta + alpha*delta.grad.detach().sign()).clamp(-epsilon,epsilon)
delta.grad.zero_()
model.zero_grad()
all_loss = loss_fn(model(X+delta), y)
max_delta[all_loss.data >= max_loss] = delta.data[all_loss.data >= max_loss]
max_loss = torch.max(max_loss, all_loss.data)
return max_delta
def main(config, resume, sysid, protocol_file, asv_score_file, epsilon):
logger = config.get_logger('PGD-attack')
data_loader = getattr(module_data, config['dev_data_loader']['type'])(
scp_file=None,
data_dir=config['dev_data_loader']['args']['data_dir'],
batch_size=8,
shuffle=False,
validation_split=0.0,
num_workers=1,
eval=True,
read_protocol=True,
protocol_file=protocol_file # ASVspoof2019.LA.cm.eval.trl.txt
)
# data_dir = config['dev_data_loader']['args']['data_dir']
output_dir = os.path.join(os.path.dirname(resume), f'pgd_adv_egs_{sysid}_{epsilon}')
os.makedirs(output_dir, exist_ok=True)
if 'lcnn' in resume:
loss_fn = config.initialize('loss', module_loss)
else:
loss_fn = nn.CrossEntropyLoss(reduction='none')
# loss_fn = nn.CrossEntropyLoss(reduction='none')
# loss_fn = nn.NLLLoss(reduction='none')
if hasattr(loss_fn, 'it'):
loss_fn.it = inf
# build model architecture
model = config.initialize('arch', module_arch)
# logger.info(model)
logger.info('Loading checkpoint: {} ...'.format(resume))
checkpoint = torch.load(resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.train()
# with open(protocol_file, 'r') as f:
# protocol_file_lines = [line.strip().split(' ') for line in f]
# if sysid is not None:
# protocol_file_lines = [i for i in protocol_file_lines if sysid in i or 'bonafide' in i]
# with torch.no_grad():
# epsilon = 1.0
# alpha = 0.1
# num_iters = 10
# restarts = 5
# epsilon = 0.1
# alpha = 0.01
# num_iters = 10
# restarts = 5
epsilon = float(epsilon)
num_iters = 10
restarts = 5
alpha = epsilon / num_iters
for i, (utt_list, data, target) in enumerate(tqdm(data_loader)):
data, target = data.to(device), target.to(device)
delta = pgd_linf_rand(model, data, target, epsilon, alpha, num_iters, restarts, loss_fn)
data_perturbed = data + delta
# data_perturbed = data_perturbed.detach().squeeze_().cpu().numpy()
with torch.no_grad():
data_perturbed = data_perturbed.squeeze_().cpu().numpy()
for index, utt_id in enumerate(utt_list):
cur_data = data_perturbed[index]
np.save(os.path.join(output_dir, f"{utt_id}.npy"), cur_data, allow_pickle=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ASVSpoof2019 project')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-s', '--sysid', default=None, type=str,
help='system id (default: None)')
parser.add_argument('-e', '--epsilon', default=None, type=str,
help='epsilon')
parser.add_argument('-f', '--protocol_file', default=None, type=str,
help='Protocol file: e.g., data/ASVspoof2019.PA.cm.dev.trl.txt')
parser.add_argument('-a', '--asv_score_file', default=None, type=str,
help='Score file: e.g., data/ASVspoof2019_PA_dev_asv_scores_v1.txt')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# epsilon_list = [100.0, 50.0, 25.0, 10.0, 5.0, 1.0, 0.1]
# epsilon_list = [5.0,]
# n_es = len(epsilon_list)
args = parser.parse_args()
config = ConfigParser(args)
# for i, epsilon in enumerate(epsilon_list):
# print(f"---> [{i+1}/{n_es}], epsilon: {epsilon}:\n")
# main(config, args.resume, args.sysid, args.protocol_file, args.asv_score_file, epsilon)
main(config, args.resume, args.sysid, args.protocol_file, args.asv_score_file, args.epsilon)