-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfgsm_attack.py
executable file
·231 lines (181 loc) · 8.48 KB
/
fgsm_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import argparse
import torch
import torch.nn.functional as F
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model as module_arch
from metrics.evaluate_tDCF_asvspoof19_func import evaluate_tdcf_eer
from parse_config import ConfigParser
from pathlib import Path
from collections import defaultdict
from functools import reduce
import numpy as np
torch.manual_seed(1234) #cpu
torch.cuda.manual_seed(1234) #gpu
np.random.seed(1234) #numpy
# random.seed(1234) #random and transforms
torch.backends.cudnn.benchmark = True
MIN_N_FRAMES = 600
N_UTTS = 1
label_dict = {"spoof": 0, "bonafide": 1}
def get_unified_feature(mat):
"""if number of frames of mat is less than MIN_N_FRAMES, pad to MIN_N_FRAMES by repeating.
Otherwise, pad mat to have mutliple MIN_N_FRAMES frames by repeating.
"""
n_frames = mat.shape[0]
if n_frames < MIN_N_FRAMES:
n_repeat = int(np.ceil(MIN_N_FRAMES / n_frames))
mat = np.tile(mat, (n_repeat, 1))
return mat[:MIN_N_FRAMES, :]
else:
n_repeat = int(np.ceil(n_frames / MIN_N_FRAMES))
mat = np.tile(mat, (n_repeat, 1))
return mat[:MIN_N_FRAMES*n_repeat, :]
# FGSM attack code
def fgsm_attack(image, epsilon, data_grad):
# Collect the element-wise sign of the data gradient
sign_data_grad = data_grad.sign()
# Create the perturbed image by adjusting each pixel of the input image
perturbed_image = image + epsilon * sign_data_grad
## optional ##
# Adding clipping to maintain [0, 1] range
# perturbed_image = torch.clamp(perturbed_image, 0, 1)
##############
# Return the perturbed image
return perturbed_image
def main(config, resume, sysid, protocol_file, asv_score_file, epsilon):
logger = config.get_logger('attack')
data_dir = config['dev_data_loader']['args']['data_dir']
output_dir = os.path.join(os.path.dirname(resume), f'fgsm_adv_egs_{sysid}_{epsilon}')
os.makedirs(output_dir, exist_ok=True)
loss_fn = config.initialize('loss', module_loss)
# build model architecture
model = config.initialize('arch', module_arch)
logger.info(model)
logger.info('Loading checkpoint: {} ...'.format(resume))
checkpoint = torch.load(resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.train()
# total_loss = 0.0
# total_metrics = torch.zeros(len(metric_fns))
with open(protocol_file, 'r') as f:
protocol_file_lines = [line.strip().split(' ') for line in f]
if sysid is not None:
protocol_file_lines = [i for i in protocol_file_lines if sysid in i or 'bonafide' in i]
correct = 0
# with torch.no_grad():
for line in tqdm(protocol_file_lines):
utt_id = line[1]
label = line[-1]
label_int = label_dict[label]
feat_org = np.load(os.path.join(data_dir, f"{utt_id}.npy"))
n_frames = feat_org.shape[0]
if n_frames <= MIN_N_FRAMES:
target = np.array([label_int]*2)
target = torch.from_numpy(target).to(device)
feat = get_unified_feature(feat_org)
feat = np.expand_dims(feat, axis=0) # -> [1, MIN_N_FRAMES, D]
feat = np.tile(feat, (2, 1, 1))
# ts_np = np.zeros((1, MIN_N_FRAMES, feat.shape[-1]))
data = torch.from_numpy(feat).float().to(device).unsqueeze_(1)
# Set requires_grad attribute of tensor. Important for Attack
# print(data.size())
# print("-"*100)
data.requires_grad = True
output = model(data)
init_pred = output[0].max(1, keepdim=True)[1] # get the index of the max probability
# If the initial prediction is wrong, dont bother attacking, just move on
if init_pred[0].item() != target[0].item():
np.save(os.path.join(output_dir, f"{utt_id}.npy"), feat_org, allow_pickle=False)
continue
# Calculate the loss
loss = loss_fn(output, target)
# Zero all existing gradients
model.zero_grad()
# Calculate gradients of model in backward pass
loss.backward()
# Collect datagrad
data_grad = data.grad.data
# Call FGSM Attack
perturbed_data = fgsm_attack(data, epsilon, data_grad)
perturbed_data = perturbed_data[0].squeeze().detach().cpu().numpy()[:n_frames, :]
np.save(os.path.join(output_dir, f"{utt_id}.npy"), perturbed_data, allow_pickle=False)
else:
feat = get_unified_feature(feat_org)
n_repeat = feat.shape[0] // MIN_N_FRAMES
target = np.array([label_int]*n_repeat)
target = torch.from_numpy(target).to(device)
ts_np = np.zeros((n_repeat, MIN_N_FRAMES, feat.shape[-1]))
for i in range(n_repeat):
ts_np[i] = feat[i*MIN_N_FRAMES:(i+1)*MIN_N_FRAMES, :]
ts_np = np.expand_dims(ts_np, axis=1) # -> [n_repeat, 1, MIN_N_FRAMES, D]
data = torch.from_numpy(ts_np).float().to(device)
data.requires_grad = True
output = model(data)
# init_pred = output[0].max(1, keepdim=True)[1] # get the index of the max probability
# Calculate the loss
loss = loss_fn(output, target)
# Zero all existing gradients
model.zero_grad()
# Calculate gradients of model in backward pass
loss.backward()
# Collect datagrad
data_grad = data.grad.data
# Call FGSM Attack
perturbed_data = fgsm_attack(data, epsilon, data_grad)
perturbed_data = perturbed_data.squeeze().detach().cpu().numpy()
perturbed_data_np = np.zeros((feat.shape[0], feat.shape[-1]))
for i in range(n_repeat):
perturbed_data_np[i*MIN_N_FRAMES:(i+1)*MIN_N_FRAMES] = perturbed_data[i]
perturbed_data_np = perturbed_data_np[:n_frames, :]
np.save(os.path.join(output_dir, f"{utt_id}.npy"), perturbed_data_np, allow_pickle=False)
# n_samples = len(protocol_file_lines)
# # log = {'loss': total_loss / n_samples}
# log = { }
# log.update({
# "accuracy": correct / n_samples
# })
# logger.info(log)
# # compute t-DCF and eer
# # with open(protocol_file, 'r') as f:
# # protocol_file_lines = [line.strip().split(' ') for line in f]
# cm_score_file = Path(resume).parent / 'cm_score_eval.txt'
# with open(cm_score_file, 'w') as f:
# for line in protocol_file_lines:
# utt_id = line[1]
# label = line[-1]
# sco = utt2scores[utt_id]
# f.write(utt_id+" "+"-"+" "+label+" "+str(sco)+"\n")
# # score_list = utt2scores[utt_id]
# # avg_score = reduce(lambda x, y: x + y, score_list) / len(score_list)
# # f.write(utt_id+" "+"-"+" "+label+" "+str(avg_score)+"\n")
# tdcf, eer = evaluate_tdcf_eer(cm_score_file, asv_score_file, print_cost=True)
# logger.info({"min-tDCF": tdcf, "EER": eer})
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ASVSpoof2019 project')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-s', '--sysid', default=None, type=str,
help='system id (default: None)')
parser.add_argument('-f', '--protocol_file', default=None, type=str,
help='Protocol file: e.g., data/ASVspoof2019.PA.cm.dev.trl.txt')
parser.add_argument('-a', '--asv_score_file', default=None, type=str,
help='Protocol file: e.g., data/ASVspoof2019_PA_dev_asv_scores_v1.txt')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
epsilon_list = [100.0, 90.0, 80.0, 70.0, 50.0, 20.0]
n_es = len(epsilon_list)
args = parser.parse_args()
config = ConfigParser(args)
for i, epsilon in enumerate(epsilon_list):
print(f"---> [{i+1}/{n_es}], epsilon: {epsilon}:\n")
main(config, args.resume, args.sysid, args.protocol_file, args.asv_score_file, epsilon)