-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_scholar.py
279 lines (230 loc) · 9.81 KB
/
extract_scholar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import re
from serpapi import GoogleSearch
import os
import json
import requests
from bs4 import BeautifulSoup
from urllib.parse import urlparse, parse_qs
from tqdm import tqdm
from groq import Groq
import urllib.request
import folium
from geopy.geocoders import Nominatim
from selenium import webdriver
from selenium.webdriver.chrome.service import Service as ChromeService
from webdriver_manager.chrome import ChromeDriverManager
import time
GS_URL = "https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=8Yd0UkIAAAAJ"
CACHE_PATH = "cache.json"
OUT_PATH = "/home/amala/Projects/rag-a-thon2"
MAP_FNAME = "map.html"
AFFILIATION_EXTRACTION_PROMPT = "Given the affiliation of a person taken from Google Scholar, extract the following information only if it is available - Job title, Institution, Department, Location. Do not write a script to do this task, directly provide the output. If any of these fields is not in the string, the corresponding value should be None. Do not print anything other than the output. For example, say this is the input - Associate Professor, University of Bari. Your job is to only output this and nothing more - Job_title:Associate Professor,Institution:University of Bari,Department:None,Location:None. Input:{}"
def get_map_coordinates(location_name):
time.sleep(3)
geolocator = Nominatim(user_agent="location_mapper")
location = geolocator.geocode(location_name)
if location:
loc = (location.latitude, location.longitude)
return loc
return None
def plot_locations_on_map(location_coordinates):
locations = list(location_coordinates.keys())
# Initialize the map centered around the first location
first_location = location_coordinates[locations[0]]
my_map = folium.Map(location=first_location, zoom_start=5)
# Add markers for each location
for loc in locations:
coords = location_coordinates[loc]
# print(loc, coords)
if coords:
folium.Marker(location=coords, popup=loc).add_to(my_map)
# Save the map as HTML
map_html = os.path.join(OUT_PATH, MAP_FNAME)
my_map.save(map_html)
# Convert the HTML map to an image using Selenium
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
driver = webdriver.Chrome(service=ChromeService(ChromeDriverManager().install()), options=options)
driver.get(f'file://{map_html}')
time.sleep(3) # Wait for the map to load
# # Save the screenshot
# driver.save_screenshot(output_file)
# driver.quit()
# print(f"Map saved as {output_file}")
def extract_parameters(url):
"""Extract 'as_sdt', 'cites', and 'start' parameters from the URL."""
# Parse the URL and extract query parameters
parsed_url = urlparse(url)
query_params = parse_qs(parsed_url.query)
# Extract the specific parameters
as_sdt = query_params.get('as_sdt', ['N/A'])[0]
cites = query_params.get('cites', ['N/A'])[0]
start = query_params.get('start', ['N/A'])[0]
print(url)
print(f"as_sdt: {as_sdt}")
print(f"cites: {cites}")
print(f"start: {start}")
return {
'as_sdt': as_sdt,
'cites': cites,
'start': start
}
def get_citations(cites, as_sdt=None, start=None):
params = {
"engine": "google_scholar",
"cites": cites,
"api_key": os.environ["SERP_API_KEY"]
}
if start is not None:
params["start"] = start
if as_sdt is not None:
params["as_sdt"] = start
search = GoogleSearch(params)
results = search.get_dict()
return results
def get_pdf_url_from_article(article_url):
"""Extract the PDF URL from a Google Scholar article page."""
headers = {
"User-Agent": (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
)
}
try:
# Send a GET request to the article URL
response = requests.get(article_url, headers=headers)
# Check if the request was successful
response.raise_for_status()
# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(response.content, "html.parser")
except requests.exceptions.HTTPError as http_err:
print(f"HTTP error occurred: {http_err}")
return None
except Exception as err:
print(f"An error occurred: {err}")
return None
pdf_div = soup.find("div", {"class": "gsc_oci_title_ggi"})
if pdf_div is None:
return None
return pdf_div.a["href"]
def get_author_info(scholar_id):
params = {
"engine": "google_scholar_author",
"author_id": scholar_id,
"api_key": os.environ["SERP_API_KEY"]
}
search = GoogleSearch(params)
results = search.get_dict()
return results
def extract_scholar_id(profile_url):
# Use a regex to find the 'user' parameter in the URL
match = re.search(r"user=([\w-]+)", profile_url)
if match:
scholar_id = match.group(1)
return scholar_id
else:
print("Invalid Google Scholar profile URL.")
return None
def process_google_scholar_profile():
if os.path.exists(CACHE_PATH):
with open(CACHE_PATH) as f:
cache = json.load(f)
else:
cache = {}
# Add data from GS profile
if "profile_info" not in cache:
profile_info = get_author_info(extract_scholar_id(GS_URL))
cache["profile_info"] = profile_info
# Add PDF link for each article
if "article_pdf_links" not in cache:
cache["article_pdf_links"] = {}
for idx, article in enumerate(cache["profile_info"]["articles"]):
pdf_url = get_pdf_url_from_article(article["link"])
cache["article_pdf_links"][idx] = pdf_url
# Fetch citing papers
if "citing_papers" not in cache:
cache["citing_papers"] = {}
for idx, article in enumerate(cache["profile_info"]["articles"]):
if article["cited_by"]["value"] == None:
cache["citing_papers"][idx] = None
else:
cites_id = article["cited_by"]["cites_id"]
citations = []
citations.append(get_citations(cites_id))
if "serpapi_pagination" in citations[-1]:
other_pages = citations[-1]["serpapi_pagination"]["other_pages"]
for page_id in sorted(other_pages.keys()):
params = extract_parameters(other_pages[page_id])
citations.append(get_citations(**params))
cache["citing_papers"][idx] = citations
# Fetch citing authors
if "citing_authors" not in cache:
cache["citing_authors"] = {}
author_ids = set()
for idx, article in cache["citing_papers"].items():
if article is None:
continue
for page in article:
for citation in page["organic_results"]:
if "authors" in citation["publication_info"]:
for author in citation["publication_info"]["authors"]:
author_ids.add(author["author_id"])
print(f"Found {len(author_ids)} citing authors")
for author_id in tqdm(author_ids):
author_info = get_author_info(author_id)
cache["citing_authors"][author_id] = author_info
# Process affiliations of all citing authors
if "citing_affiliations" not in cache:
cache["citing_affiliations"] = {}
affiliations = set([v["author"]["affiliations"] for k, v in cache["citing_authors"].items() if "error" not in v])
client = Groq(
api_key=os.environ.get("GROQ_API_KEY"),
)
for affiliation in affiliations:
chat_completion = client.chat.completions.create(
messages=[{"role": "user","content": AFFILIATION_EXTRACTION_PROMPT.format(affiliation)}],
model="llama3-8b-8192",
)
cache["citing_affiliations"][affiliation] = chat_completion.choices[0].message.content
new_affs = {}
for k, v in cache["citing_affiliations"].items():
try:
elements = v.split(",")
elements_merged = [elements[0].strip()]
for elem in elements[1:]:
if ":" not in elem:
elements_merged[-1] += ", " + elem.strip()
else:
elements_merged.append(elem.strip())
elements = elements_merged
elements = [elem.split(":") for elem in elements]
d = {k_elem.strip(): v_elem.strip() for k_elem, v_elem in elements}
print(d)
except Exception as e:
print(v, "|||||||||||||||", e)
new_affs[k] = {
"orig": v,
"parsed": d
}
cache["citing_affiliations"] = new_affs
# Get coordinates for locations
if "map_coordinates" not in cache:
cache["map_coordinates"] = {}
locations = []
for k, v in cache["citing_affiliations"].items():
info = v["parsed"]
info = {kk.lower(): vv for kk, vv in info.items()}
if "location" in info and info["location"] not in ["None", "None."]:
locations.append(info["location"])
elif "institution" in info and info["institution"] not in ["None", "None."]:
locations.append(info["institution"])
for location in locations:
cache["map_coordinates"][location] = get_map_coordinates(location)
# Plot locations on map
plot_locations_on_map(cache["map_coordinates"])
with open(CACHE_PATH, "w") as f:
json.dump(cache, f)
if __name__ == "__main__":
process_google_scholar_profile()