-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathload_data.py
163 lines (123 loc) · 5.97 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from os.path import join
import cv2
import numpy as np
import csv
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import random
import keras.backend as K
from config import *
def split_train_val(csv_driving_data, test_size=0.2):
"""
Splits the csv containing driving data into training and validation
:param csv_driving_data: file path of Udacity csv driving data
:return: train_split, validation_split
"""
with open(csv_driving_data, 'r') as f:
reader = csv.reader(f)
driving_data = [row for row in reader][1:]
train_data, val_data = train_test_split(driving_data, test_size=test_size, random_state=1)
return train_data, val_data
def preprocess(frame_bgr, verbose=False):
"""
Perform preprocessing steps on a single bgr frame.
These inlcude: cropping, resizing, eventually converting to grayscale
:param frame_bgr: input color frame in BGR format
:param verbose: if true, open debugging visualization
:return:
"""
# set training images resized shape
h, w = CONFIG['input_height'], CONFIG['input_width']
# crop image (remove useless information)
frame_cropped = frame_bgr[CONFIG['crop_height'], :, :]
# resize image
frame_resized = cv2.resize(frame_cropped, dsize=(w, h))
# eventually change color space
if CONFIG['input_channels'] == 1:
frame_resized = np.expand_dims(cv2.cvtColor(frame_resized, cv2.COLOR_BGR2YUV)[:, :, 0], 2)
if verbose:
plt.figure(1), plt.imshow(cv2.cvtColor(frame_bgr, code=cv2.COLOR_BGR2RGB))
plt.figure(2), plt.imshow(cv2.cvtColor(frame_cropped, code=cv2.COLOR_BGR2RGB))
plt.figure(3), plt.imshow(cv2.cvtColor(frame_resized, code=cv2.COLOR_BGR2RGB))
plt.show()
return frame_resized.astype('float32')
def load_data_batch(data, batchsize=CONFIG['batchsize'], data_dir='data', augment_data=True, bias=0.5):
"""
Load a batch of driving data from the "data" list.
A batch of data is constituted by a batch of frames of the training track as well as the corresponding
steering directions.
:param data: list of training data in the format provided by Udacity
:param batchsize: number of elements in the batch
:param data_dir: directory in which frames are stored
:param augment_data: if True, perform data augmentation on training data
:param bias: parameter for balancing ground truth distribution (which is biased towards steering=0)
:return: X, Y which are the batch of input frames and steering angles respectively
"""
# set training images resized shape
h, w, c = CONFIG['input_height'], CONFIG['input_width'], CONFIG['input_channels']
# prepare output structures
X = np.zeros(shape=(batchsize, h, w, c), dtype=np.float32)
y_steer = np.zeros(shape=(batchsize,), dtype=np.float32)
y_throttle = np.zeros(shape=(batchsize,), dtype=np.float32)
# shuffle data
shuffled_data = shuffle(data)
loaded_elements = 0
while loaded_elements < batchsize:
ct_path, lt_path, rt_path, steer, throttle, brake, speed = shuffled_data.pop()
# cast strings to float32
steer = np.float32(steer)
throttle = np.float32(throttle)
# randomly choose which camera to use among (central, left, right)
# in case the chosen camera is not the frontal one, adjust steer accordingly
delta_correction = CONFIG['delta_correction']
camera = random.choice(['frontal', 'left', 'right'])
if camera == 'frontal':
frame = preprocess(cv2.imread(join(data_dir, ct_path.strip())))
steer = steer
elif camera == 'left':
frame = preprocess(cv2.imread(join(data_dir, lt_path.strip())))
steer = steer + delta_correction
elif camera == 'right':
frame = preprocess(cv2.imread(join(data_dir, rt_path.strip())))
steer = steer - delta_correction
if augment_data:
# mirror images with chance=0.5
if random.choice([True, False]):
frame = frame[:, ::-1, :]
steer *= -1.
# perturb slightly steering direction
steer += np.random.normal(loc=0, scale=CONFIG['augmentation_steer_sigma'])
# if color images, randomly change brightness
if CONFIG['input_channels'] == 3:
frame = cv2.cvtColor(frame, code=cv2.COLOR_BGR2HSV)
frame[:, :, 2] *= random.uniform(CONFIG['augmentation_value_min'], CONFIG['augmentation_value_max'])
frame[:, :, 2] = np.clip(frame[:, :, 2], a_min=0, a_max=255)
frame = cv2.cvtColor(frame, code=cv2.COLOR_HSV2BGR)
# check that each element in the batch meet the condition
steer_magnitude_thresh = np.random.rand()
if (abs(steer) + bias) < steer_magnitude_thresh:
pass # discard this element
else:
X[loaded_elements] = frame
y_steer[loaded_elements] = steer
loaded_elements += 1
if K.backend() == 'theano':
X = X.transpose(0, 3, 1, 2)
return X, y_steer
def generate_data_batch(data, batchsize=CONFIG['batchsize'], data_dir='data', augment_data=True, bias=0.5):
"""
Generator that indefinitely yield batches of training data
:param data: list of training data in the format provided by Udacity
:param batchsize: number of elements in the batch
:param data_dir: directory in which frames are stored
:param augment_data: if True, perform data augmentation on training data
:param bias: parameter for balancing ground truth distribution (which is biased towards steering=0)
:return: X, Y which are the batch of input frames and steering angles respectively
"""
while True:
X, y_steer = load_data_batch(data, batchsize, data_dir, augment_data, bias)
yield X, y_steer
if __name__ == '__main__':
# debugging purpose
train_data, val_data = split_train_val(csv_driving_data='data/driving_log.csv')