diff --git a/README.Rmd b/README.Rmd
index 0ee7ff4..1f10c03 100644
--- a/README.Rmd
+++ b/README.Rmd
@@ -80,19 +80,19 @@ remotes::install_github("ncn-foreigners/nonprobsvy@dev")
## Basic idea
Consider the following setting where two samples are available:
-non-probability (denoted as $S_A$ ) and probability (denoted as $S_B$)
+non-probability (denoted as $S_A$) and probability (denoted as $S_B$)
where set of auxiliary variables (denoted as $\boldsymbol{X}$) is
available for both sources while $Y$ and $\boldsymbol{d}$ (or
$\boldsymbol{w}$) is present only in probability sample.
-| Sample | | Auxiliary variables $\boldsymbol{X}$ | Target variable $Y$ | Design ($\boldsymbol{d}$) or calibrated ($\boldsymbol{w}$) weights |
+| Sample | | Auxiliary variables $\bol dsymbol{X}$ | Target variable $Y$ | Design ($\bold symbol{d}$) or calibrated ($\bold symbol{w}$) weights |
|---------------|--------------:|:-------------:|:-------------:|:-------------:|
-| $S_A$ (non-probability) | 1 | $\checkmark$ | $\checkmark$ | ? |
-| | ... | $\checkmark$ | $\checkmark$ | ? |
-| | $n_A$ | $\checkmark$ | $\checkmark$ | ? |
-| $S_B$ (probability) | $n_A+1$ | $\checkmark$ | ? | $\checkmark$ |
-| | ... | $\checkmark$ | ? | $\checkmark$ |
-| | $n_A+n_B$ | $\checkmark$ | ? | $\checkmark$ |
+| $S_A$ (non-p robability) | 1 | \$ \checkmark\$ | \$ \checkmark\$ | ? |
+| | ... | \$ \checkmark\$ | \$ \checkmark\$ | ? |
+| | $n_A$ | \$ \checkmark\$ | \$ \checkmark\$ | ? |
+| $S_B$ (p robability) | $n_A+1$ | \$ \checkmark\$ | ? | \$ \checkmark\$ |
+| | ... | \$ \checkmark\$ | ? | \$ \checkmark\$ |
+| | $n_A+n_B$ | \$ \checkmark\$ | ? | \$ \checkmark\$ |
## Basic functionalities
@@ -104,12 +104,12 @@ $(y_k, \boldsymbol{x}_k, R_k)$, we can approach this problem with the
possible scenarios:
- unit-level data is available for the non-probability sample $S_{A}$,
- i.e. $(y_{k}, \boldsymbol{x}_{k})$ is available for all units
- $k \in S_{A}$, and population-level data is available for
- $\boldsymbol{x}_{1}, ..., \boldsymbol{x}_{p}$, denoted as
- $\tau_{x_{1}}, \tau_{x_{2}}, ..., \tau_{x_{p}}$ and population size $N$ is
- known. We can also consider situations where population data are
- estimated (e.g. on the basis of a survey to which we do not have
+ i.e. \(y_{k}, \boldsymbol{x}_{k}\) is available for all units
+ \(k \in S_{A}\), and population-level data is available for
+ \(\boldsymbol{x}_{1}, ..., \boldsymbol{x}_{p}\), denoted as
+ $\tau_{x_{1}}, \tau_{x_{2}}, ..., \tau_{x_{p}}$ and population size
+ $N$ is known. We can also consider situations where population data
+ are estimated (e.g. on the basis of a survey to which we do not have
access),
- unit-level data is available for the non-probability sample $S_A$
and the probability sample $S_B$, i.e.
@@ -120,253 +120,41 @@ possible scenarios:
### When unit-level data is available for non-probability survey only
-
- Estimator | Example code |
-
-
-Mass imputation based on regression imputation
- |
-
-```{r, eval = FALSE}
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- pop_totals = c(`(Intercept)`= N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
- |
-
-
-
-Inverse probability weighting
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- pop_totals = c(`(Intercept)` = N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- method_selection = "logit"
-)
-```
- |
-
-
-
-Inverse probability weighting with calibration constraint
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- pop_totals = c(`(Intercept)`= N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- method_selection = "logit",
- control_selection = controlSel(est_method_sel = "gee", h = 1)
-)
-```
- |
-
-
-
-Doubly robust estimator
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- outcome = y ~ x1 + x2 + …, + xk,
- pop_totals = c(`(Intercept)` = N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
- |
-
-
+| Estimator | Example code |
+|------------------------------------|------------------------------------|
+| | |
+| Mass imputation based on regression imputation | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + \... + xk, data = nonprob, pop_totals = c(\`(Intercept)\`= N, x1 = tau_x1, x2 = tau_x2, \..., xk = tau_xk), method_outcome = "glm", family_outcome = "gaussian" ) \`\`\` |
+| | |
+| Inverse probability weighting | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, target = \~ y, data = nonprob, pop_totals = c(\`(Intercept)\` = N, x1 = tau_x1, x2 = tau_x2, \..., xk = tau_xk), method_selection = "logit" ) \`\`\` |
+| | |
+| Inverse probability weighting with calibration constraint | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, target = \~ y, data = nonprob, pop_totals = c(\`(Intercept)\`= N, x1 = tau_x1, x2 = tau_x2, \..., xk = tau_xk), method_selection = "logit", control_selection = controlSel(est_method_sel = "gee", h = 1) ) \`\`\` |
+| | |
+| Doubly robust estimator | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, outcome = y \~ x1 + x2 + ..., + xk, pop_totals = c(\`(Intercept)\` = N, x1 = tau_x1, x2 = tau_x2, \..., xk = tau_xk), svydesign = prob, method_outcome = "glm", family_outcome = "gaussian" ) \`\`\` |
+| | |
### When unit-level data are available for both surveys
-
- Estimator | Example code |
-
-
-Mass imputation based on regression imputation
- |
-
-```{r, eval = FALSE}
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
- |
-
-
-
-Mass imputation based on nearest neighbour imputation
- |
-
-```{r, eval = FALSE}
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "nn",
- family_outcome = "gaussian",
- control_outcome = controlOutcome(k = 2)
-)
-```
- |
-
-
-
-Mass imputation based on predictive mean matching
- |
-
-```{r, eval = FALSE}
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "pmm",
- family_outcome = "gaussian"
-)
-```
- |
-
-
-
-Mass imputation based on regression imputation with variable selection (LASSO)
- |
-
-```{r, eval = FALSE}
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "pmm",
- family_outcome = "gaussian",
- control_outcome = controlOut(penalty = "lasso"),
- control_inference = controlInf(vars_selection = TRUE)
-)
-```
- |
-
-
-
-Inverse probability weighting
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- svydesign = prob,
- method_selection = "logit"
-)
-```
- |
-
-
-
-Inverse probability weighting with calibration constraint
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- svydesign = prob,
- method_selection = "logit",
- control_selection = controlSel(est_method_sel = "gee", h = 1)
-)
-```
- |
-
-
-
-Inverse probability weighting with calibration constraint with variable selection (SCAD)
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- svydesign = prob,
- method_outcome = "pmm",
- family_outcome = "gaussian",
- control_inference = controlInf(vars_selection = TRUE)
-)
-```
- |
-
-
-
-Doubly robust estimator
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
- |
-
-
-
-Doubly robust estimator with variable selection (SCAD) and bias minimization
- |
-
-```{r, eval = FALSE}
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian",
- control_inference = controlInf(
- vars_selection = TRUE,
- bias_correction = TRUE
- )
-)
-```
- |
-
-
+| Estimator | Example code |
+|------------------------------------|------------------------------------|
+| | |
+| Mass imputation based on regression imputation | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + \... + xk, data = nonprob, svydesign = prob, method_outcome = "glm", family_outcome = "gaussian" ) \`\`\` |
+| | |
+| Mass imputation based on nearest neighbour imputation | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + \... + xk, data = nonprob, svydesign = prob, method_outcome = "nn", family_outcome = "gaussian", control_outcome = controlOutcome(k = 2) ) \`\`\` |
+| | |
+| Mass imputation based on predictive mean matching | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + \... + xk, data = nonprob, svydesign = prob, method_outcome = "pmm", family_outcome = "gaussian" ) \`\`\` |
+| | |
+| Mass imputation based on regression imputation with variable selection (LASSO) | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + \... + xk, data = nonprob, svydesign = prob, method_outcome = "pmm", family_outcome = "gaussian", control_outcome = controlOut(penalty = "lasso"), control_inference = controlInf(vars_selection = TRUE) ) \`\`\` |
+| | |
+| Inverse probability weighting | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, target = \~ y, data = nonprob, svydesign = prob, method_selection = "logit" ) \`\`\` |
+| | |
+| Inverse probability weighting with calibration constraint | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, target = \~ y, data = nonprob, svydesign = prob, method_selection = "logit", control_selection = controlSel(est_method_sel = "gee", h = 1) ) \`\`\` |
+| | |
+| Inverse probability weighting with calibration constraint with variable selection (SCAD) | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, target = \~ y, data = nonprob, svydesign = prob, method_outcome = "pmm", family_outcome = "gaussian", control_inference = controlInf(vars_selection = TRUE) ) \`\`\` |
+| | |
+| Doubly robust estimator | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, outcome = y \~ x1 + x2 + \... + xk, data = nonprob, svydesign = prob, method_outcome = "glm", family_outcome = "gaussian" ) \`\`\` |
+| | |
+| Doubly robust estimator with variable selection (SCAD) and bias minimization | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + \... + xk, outcome = y \~ x1 + x2 + \... + xk, data = nonprob, svydesign = prob, method_outcome = "glm", family_outcome = "gaussian", control_inference = controlInf( vars_selection = TRUE, bias_correction = TRUE ) ) \`\`\` |
+| | |
## Examples
diff --git a/README.md b/README.md
index 7e841da..39b2822 100644
--- a/README.md
+++ b/README.md
@@ -64,19 +64,19 @@ remotes::install_github("ncn-foreigners/nonprobsvy@dev")
## Basic idea
Consider the following setting where two samples are available:
-non-probability (denoted as $S_A$ ) and probability (denoted as $S_B$)
+non-probability (denoted as $S_A$) and probability (denoted as $S_B$)
where set of auxiliary variables (denoted as $\boldsymbol{X}$) is
available for both sources while $Y$ and $\boldsymbol{d}$ (or
$\boldsymbol{w}$) is present only in probability sample.
-| Sample | | Auxiliary variables $\boldsymbol{X}$ | Target variable $Y$ | Design ($\boldsymbol{d}$) or calibrated ($\boldsymbol{w}$) weights |
-|-------------------------|----------:|:------------------------------------:|:-------------------:|:------------------------------------------------------------------:|
-| $S_A$ (non-probability) | 1 | $\checkmark$ | $\checkmark$ | ? |
-| | … | $\checkmark$ | $\checkmark$ | ? |
-| | $n_A$ | $\checkmark$ | $\checkmark$ | ? |
-| $S_B$ (probability) | $n_A+1$ | $\checkmark$ | ? | $\checkmark$ |
-| | … | $\checkmark$ | ? | $\checkmark$ |
-| | $n_A+n_B$ | $\checkmark$ | ? | $\checkmark$ |
+| Sample | | Auxiliary variables $\bol dsymbol{X}$ | Target variable $Y$ | Design ($\bold symbol{d}$) or calibrated ($\bold symbol{w}$) weights |
+|--------------------------|----------:|:-------------------------------------:|:-------------------:|:--------------------------------------------------------------------:|
+| $S_A$ (non-p robability) | 1 | \$ \$ | \$ \$ | ? |
+| | … | \$ \$ | \$ \$ | ? |
+| | $n_A$ | \$ \$ | \$ \$ | ? |
+| $S_B$ (p robability) | $n_A+1$ | \$ \$ | ? | \$ \$ |
+| | … | \$ \$ | ? | \$ \$ |
+| | $n_A+n_B$ | \$ \$ | ? | \$ \$ |
## Basic functionalities
@@ -88,7 +88,7 @@ $(y_k, \boldsymbol{x}_k, R_k)$, we can approach this problem with the
possible scenarios:
- unit-level data is available for the non-probability sample $S_{A}$,
- i.e. $(y_{k}, \boldsymbol{x}_{k})$ is available for all units
+ i.e. $y_{k}, \boldsymbol{x}_{k}$ is available for all units
$k \in S_{A}$, and population-level data is available for
$\boldsymbol{x}_{1}, ..., \boldsymbol{x}_{p}$, denoted as
$\tau_{x_{1}}, \tau_{x_{2}}, ..., \tau_{x_{p}}$ and population size
@@ -103,296 +103,41 @@ possible scenarios:
### When unit-level data is available for non-probability survey only
-
-
-
-Estimator
- |
-
-Example code
- |
-
-
-
-Mass imputation based on regression imputation
- |
-
-
-``` r
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- pop_totals = c(`(Intercept)`= N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
-
- |
-
-
-
-Inverse probability weighting
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- pop_totals = c(`(Intercept)` = N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- method_selection = "logit"
-)
-```
-
- |
-
-
-
-Inverse probability weighting with calibration constraint
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- pop_totals = c(`(Intercept)`= N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- method_selection = "logit",
- control_selection = controlSel(est_method_sel = "gee", h = 1)
-)
-```
-
- |
-
-
-
-Doubly robust estimator
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- outcome = y ~ x1 + x2 + …, + xk,
- pop_totals = c(`(Intercept)` = N,
- x1 = tau_x1,
- x2 = tau_x2,
- ...,
- xk = tau_xk),
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
-
- |
-
-
+| Estimator | Example code |
+|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
+| | |
+| Mass imputation based on regression imputation | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + ... + xk, data = nonprob, pop_totals = c(\`(Intercept)\`= N, x1 = tau_x1, x2 = tau_x2, ..., xk = tau_xk), method_outcome = “glm”, family_outcome = “gaussian” ) \`\`\` |
+| | |
+| Inverse probability weighting | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, target = \~ y, data = nonprob, pop_totals = c(\`(Intercept)\` = N, x1 = tau_x1, x2 = tau_x2, ..., xk = tau_xk), method_selection = “logit” ) \`\`\` |
+| | |
+| Inverse probability weighting with calibration constraint | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, target = \~ y, data = nonprob, pop_totals = c(\`(Intercept)\`= N, x1 = tau_x1, x2 = tau_x2, ..., xk = tau_xk), method_selection = “logit”, control_selection = controlSel(est_method_sel = “gee”, h = 1) ) \`\`\` |
+| | |
+| Doubly robust estimator | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, outcome = y \~ x1 + x2 + …, + xk, pop_totals = c(\`(Intercept)\` = N, x1 = tau_x1, x2 = tau_x2, ..., xk = tau_xk), svydesign = prob, method_outcome = “glm”, family_outcome = “gaussian” ) \`\`\` |
+| | |
### When unit-level data are available for both surveys
-
-
-
-Estimator
- |
-
-Example code
- |
-
-
-
-Mass imputation based on regression imputation
- |
-
-
-``` r
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
-
- |
-
-
-
-Mass imputation based on nearest neighbour imputation
- |
-
-
-``` r
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "nn",
- family_outcome = "gaussian",
- control_outcome = controlOutcome(k = 2)
-)
-```
-
- |
-
-
-
-Mass imputation based on predictive mean matching
- |
-
-
-``` r
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "pmm",
- family_outcome = "gaussian"
-)
-```
-
- |
-
-
-
-Mass imputation based on regression imputation with variable selection
-(LASSO)
- |
-
-
-``` r
-nonprob(
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "pmm",
- family_outcome = "gaussian",
- control_outcome = controlOut(penalty = "lasso"),
- control_inference = controlInf(vars_selection = TRUE)
-)
-```
-
- |
-
-
-
-Inverse probability weighting
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- svydesign = prob,
- method_selection = "logit"
-)
-```
-
- |
-
-
-
-Inverse probability weighting with calibration constraint
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- svydesign = prob,
- method_selection = "logit",
- control_selection = controlSel(est_method_sel = "gee", h = 1)
-)
-```
-
- |
-
-
-
-Inverse probability weighting with calibration constraint with variable
-selection (SCAD)
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- target = ~ y,
- data = nonprob,
- svydesign = prob,
- method_outcome = "pmm",
- family_outcome = "gaussian",
- control_inference = controlInf(vars_selection = TRUE)
-)
-```
-
- |
-
-
-
-Doubly robust estimator
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian"
-)
-```
-
- |
-
-
-
-Doubly robust estimator with variable selection (SCAD) and bias
-minimization
- |
-
-
-``` r
-nonprob(
- selection = ~ x1 + x2 + ... + xk,
- outcome = y ~ x1 + x2 + ... + xk,
- data = nonprob,
- svydesign = prob,
- method_outcome = "glm",
- family_outcome = "gaussian",
- control_inference = controlInf(
- vars_selection = TRUE,
- bias_correction = TRUE
- )
-)
-```
-
- |
-
-
+| Estimator | Example code |
+|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
+| | |
+| Mass imputation based on regression imputation | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + ... + xk, data = nonprob, svydesign = prob, method_outcome = “glm”, family_outcome = “gaussian” ) \`\`\` |
+| | |
+| Mass imputation based on nearest neighbour imputation | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + ... + xk, data = nonprob, svydesign = prob, method_outcome = “nn”, family_outcome = “gaussian”, control_outcome = controlOutcome(k = 2) ) \`\`\` |
+| | |
+| Mass imputation based on predictive mean matching | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + ... + xk, data = nonprob, svydesign = prob, method_outcome = “pmm”, family_outcome = “gaussian” ) \`\`\` |
+| | |
+| Mass imputation based on regression imputation with variable selection (LASSO) | \`\`\`{r, eval = FALSE} nonprob( outcome = y \~ x1 + x2 + ... + xk, data = nonprob, svydesign = prob, method_outcome = “pmm”, family_outcome = “gaussian”, control_outcome = controlOut(penalty = “lasso”), control_inference = controlInf(vars_selection = TRUE) ) \`\`\` |
+| | |
+| Inverse probability weighting | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, target = \~ y, data = nonprob, svydesign = prob, method_selection = “logit” ) \`\`\` |
+| | |
+| Inverse probability weighting with calibration constraint | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, target = \~ y, data = nonprob, svydesign = prob, method_selection = “logit”, control_selection = controlSel(est_method_sel = “gee”, h = 1) ) \`\`\` |
+| | |
+| Inverse probability weighting with calibration constraint with variable selection (SCAD) | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, target = \~ y, data = nonprob, svydesign = prob, method_outcome = “pmm”, family_outcome = “gaussian”, control_inference = controlInf(vars_selection = TRUE) ) \`\`\` |
+| | |
+| Doubly robust estimator | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, outcome = y \~ x1 + x2 + ... + xk, data = nonprob, svydesign = prob, method_outcome = “glm”, family_outcome = “gaussian” ) \`\`\` |
+| | |
+| Doubly robust estimator with variable selection (SCAD) and bias minimization | \`\`\`{r, eval = FALSE} nonprob( selection = \~ x1 + x2 + ... + xk, outcome = y \~ x1 + x2 + ... + xk, data = nonprob, svydesign = prob, method_outcome = “glm”, family_outcome = “gaussian”, control_inference = controlInf( vars_selection = TRUE, bias_correction = TRUE ) ) \`\`\` |
+| | |
## Examples
@@ -609,8 +354,7 @@ Work on this package is supported by the National Science Centre, OPUS
## References (selected)
-