-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_gene_vae.py
181 lines (121 loc) · 4.98 KB
/
train_gene_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import numpy as np
import pandas as pd
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from GeneVAE import GeneVAE
from utils import get_device, common
# ============================================================================
# Define gene expression dataset
class GeneExpressionDataset(torch.utils.data.Dataset):
def __init__(self, data):
self.data = data
self.data_num = len(data)
def __len__(self):
return self.data_num
def __getitem__(self, idx):
gene_data = torch.tensor(self.data.iloc[idx]).float()
return gene_data
# ============================================================================
# Load gene expression dataset
def load_gene_expression_dataset(args):
# Load data, which contains smiles, inchikey, and gene values
data = pd.read_csv(
args.gene_expression_file + args.cell_name + '.csv',
sep=',',
names=['inchikey','smiles'] + ['gene'+str(i) for i in range(1,args.gene_num+1)]
)
# Use only gene values to train the GeneVAE (omit smiles and inchikey)
data = data.iloc[:, 2:]
# Drop the nan row
data = data.dropna(how='any')
# Normalize data per gene
#data = (data - data.mean())/data.std()
# Get a batch of gene data
train_data = GeneExpressionDataset(data)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.gene_batch_size,
shuffle=True
)
return train_loader
# ============================================================================
# Load testing gene expression dataset
def load_test_gene_data(args):
# Load data, which contains gene values
data = pd.read_csv(
args.test_gene_data + args.protein_name + '.csv',
sep=',',
names=['name'] + ['gene'+str(i) for i in range(1,args.gene_num+1)]
)
data = data.iloc[:,1:]
# Common the gene data with the columns of the source gene expression profiles
data = common(data, args.gene_type)
# Get a batch of gene data
test_data = GeneExpressionDataset(data)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=args.gene_batch_size,
shuffle=False
)
return test_loader
# ============================================================================
# Train GeneVAE (ProfileVAE)
def train_gene_vae(args):
# Load gene dataset
train_loader = load_gene_expression_dataset(args)
# Define GeneVAE
gene_vae = GeneVAE(
input_size=args.gene_num,
hidden_sizes=args.gene_hidden_sizes,
latent_size=args.gene_latent_size,
output_size=args.gene_num,
activation_fn=nn.ReLU(),
dropout=args.gene_dropout
).to(get_device())
# Optimizer
gene_optimizer = optim.Adam(gene_vae.parameters(), lr=args.gene_lr)
# Gradually decrease the alpha (weight of MSE relative to KL)
alpha = 0.5
alphas = torch.cat([
torch.linspace(0.99, alpha, int(args.gene_epochs/2)),
alpha * torch.ones(args.gene_epochs - int(args.gene_epochs/2))
]).double().to(get_device())
# Prepare file to save results
with open(args.gene_vae_train_results, 'a+') as wf:
wf.truncate(0)
wf.write('{},{},{},{}\n'.format('Epoch', 'Joint', 'Rec', 'KLD'))
print('Training Information:')
for epoch in range(args.gene_epochs):
total_joint_loss = 0
total_rec_loss = 0
total_kld_loss = 0
gene_vae.train()
for _, genes in enumerate(train_loader):
genes = genes.to(get_device())
_, rec_genes = gene_vae(genes)
joint_loss, rec_loss, kld_loss = gene_vae.joint_loss(
outputs=rec_genes,
targets=genes,
alpha=alphas[epoch],
beta=1.
)
gene_optimizer.zero_grad()
joint_loss.backward()
gene_optimizer.step()
total_joint_loss += joint_loss.item()
total_rec_loss += rec_loss.item()
total_kld_loss += kld_loss.item()
mean_joint_loss = total_joint_loss / len(train_loader.dataset)
mean_rec_loss = total_rec_loss / (len(train_loader.dataset) * args.gene_num)
mean_kld_loss = total_kld_loss / (len(train_loader.dataset) * args.gene_latent_size)
print('Epoch {:d} / {:d}, joint_loss: {:.3f}, rec_loss: {:.3f}, kld_loss: {:.3f},'.format(\
epoch+1, args.gene_epochs, mean_joint_loss, mean_rec_loss, mean_kld_loss))
# Save trained results to file
with open(args.gene_vae_train_results, 'a+') as wf:
wf.write('{},{:.3f},{:.3f},{:.3f}\n'.format(epoch+1, mean_joint_loss, mean_rec_loss, mean_kld_loss))
# Save trained GeneVAE
gene_vae.save_model(args.saved_gene_vae + '_' + args.cell_name + '.pkl')
print('Trained GeneVAE is saved in {}'.format(args.saved_gene_vae + '_' + args.cell_name + '.pkl'))
return gene_vae