forked from nrodofile/ScapyDNP3_lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·500 lines (420 loc) · 16.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#-----------------------------------------------------------------------------
# Copyright (c) 2010 Raymond L. Buvel
# Copyright (c) 2010 Craig McQueen
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#-----------------------------------------------------------------------------
'''Unit tests for crcmod functionality'''
import unittest
import binascii
from crcmod import mkCrcFun, Crc
try:
from crcmod.crcmod import _usingExtension
from crcmod.predefined import PredefinedCrc
from crcmod.predefined import mkPredefinedCrcFun
from crcmod.predefined import _crc_definitions as _predefined_crc_definitions
except ImportError:
from crcmod import _usingExtension
from predefined import PredefinedCrc
from predefined import mkPredefinedCrcFun
from predefined import _crc_definitions as _predefined_crc_definitions
#-----------------------------------------------------------------------------
# This polynomial was chosen because it is the product of two irreducible
# polynomials.
# g8 = (x^7+x+1)*(x+1)
g8 = 0x185
#-----------------------------------------------------------------------------
# The following reproduces all of the entries in the Numerical Recipes table.
# This is the standard CCITT polynomial.
g16 = 0x11021
#-----------------------------------------------------------------------------
g24 = 0x15D6DCB
#-----------------------------------------------------------------------------
# This is the standard AUTODIN-II polynomial which appears to be used in a
# wide variety of standards and applications.
g32 = 0x104C11DB7
#-----------------------------------------------------------------------------
# I was able to locate a couple of 64-bit polynomials on the web. To make it
# easier to input the representation, define a function that builds a
# polynomial from a list of the bits that need to be turned on.
def polyFromBits(bits):
p = 0L
for n in bits:
p = p | (1L << n)
return p
# The following is from the paper "An Improved 64-bit Cyclic Redundancy Check
# for Protein Sequences" by David T. Jones
g64a = polyFromBits([64, 63, 61, 59, 58, 56, 55, 52, 49, 48, 47, 46, 44, 41,
37, 36, 34, 32, 31, 28, 26, 23, 22, 19, 16, 13, 12, 10, 9, 6, 4,
3, 0])
# The following is from Standard ECMA-182 "Data Interchange on 12,7 mm 48-Track
# Magnetic Tape Cartridges -DLT1 Format-", December 1992.
g64b = polyFromBits([64, 62, 57, 55, 54, 53, 52, 47, 46, 45, 40, 39, 38, 37,
35, 33, 32, 31, 29, 27, 24, 23, 22, 21, 19, 17, 13, 12, 10, 9, 7,
4, 1, 0])
#-----------------------------------------------------------------------------
# This class is used to check the CRC calculations against a direct
# implementation using polynomial division.
class poly:
'''Class implementing polynomials over the field of integers mod 2'''
def __init__(self,p):
p = long(p)
if p < 0: raise ValueError('invalid polynomial')
self.p = p
def __long__(self):
return self.p
def __eq__(self,other):
return self.p == other.p
def __ne__(self,other):
return self.p != other.p
# To allow sorting of polynomials, use their long integer form for
# comparison
def __cmp__(self,other):
return cmp(self.p, other.p)
def __nonzero__(self):
return self.p != 0L
def __neg__(self):
return self # These polynomials are their own inverse under addition
def __invert__(self):
n = max(self.deg() + 1, 1)
x = (1L << n) - 1
return poly(self.p ^ x)
def __add__(self,other):
return poly(self.p ^ other.p)
def __sub__(self,other):
return poly(self.p ^ other.p)
def __mul__(self,other):
a = self.p
b = other.p
if a == 0 or b == 0: return poly(0)
x = 0L
while b:
if b&1:
x = x ^ a
a = a<<1
b = b>>1
return poly(x)
def __divmod__(self,other):
u = self.p
m = self.deg()
v = other.p
n = other.deg()
if v == 0: raise ZeroDivisionError('polynomial division by zero')
if n == 0: return (self,poly(0))
if m < n: return (poly(0),self)
k = m-n
a = 1L << m
v = v << k
q = 0L
while k > 0:
if a & u:
u = u ^ v
q = q | 1L
q = q << 1
a = a >> 1
v = v >> 1
k -= 1
if a & u:
u = u ^ v
q = q | 1L
return (poly(q),poly(u))
def __div__(self,other):
return self.__divmod__(other)[0]
def __mod__(self,other):
return self.__divmod__(other)[1]
def __repr__(self):
return 'poly(0x%XL)' % self.p
def __str__(self):
p = self.p
if p == 0: return '0'
lst = { 0:[], 1:['1'], 2:['x'], 3:['1','x'] }[p&3]
p = p>>2
n = 2
while p:
if p&1: lst.append('x^%d' % n)
p = p>>1
n += 1
lst.reverse()
return '+'.join(lst)
def deg(self):
'''return the degree of the polynomial'''
a = self.p
if a == 0: return -1
n = 0
while a >= 0x10000L:
n += 16
a = a >> 16
a = int(a)
while a > 1:
n += 1
a = a >> 1
return n
#-----------------------------------------------------------------------------
# The following functions compute the CRC using direct polynomial division.
# These functions are checked against the result of the table driven
# algorithms.
g8p = poly(g8)
x8p = poly(1L<<8)
def crc8p(d):
d = map(ord, d)
p = 0L
for i in d:
p = p*256L + i
p = poly(p)
return long(p*x8p%g8p)
g16p = poly(g16)
x16p = poly(1L<<16)
def crc16p(d):
d = map(ord, d)
p = 0L
for i in d:
p = p*256L + i
p = poly(p)
return long(p*x16p%g16p)
g24p = poly(g24)
x24p = poly(1L<<24)
def crc24p(d):
d = map(ord, d)
p = 0L
for i in d:
p = p*256L + i
p = poly(p)
return long(p*x24p%g24p)
g32p = poly(g32)
x32p = poly(1L<<32)
def crc32p(d):
d = map(ord, d)
p = 0L
for i in d:
p = p*256L + i
p = poly(p)
return long(p*x32p%g32p)
g64ap = poly(g64a)
x64p = poly(1L<<64)
def crc64ap(d):
d = map(ord, d)
p = 0L
for i in d:
p = p*256L + i
p = poly(p)
return long(p*x64p%g64ap)
g64bp = poly(g64b)
def crc64bp(d):
d = map(ord, d)
p = 0L
for i in d:
p = p*256L + i
p = poly(p)
return long(p*x64p%g64bp)
class KnownAnswerTests(unittest.TestCase):
test_messages = [
'T',
'CatMouse987654321',
]
known_answers = [
[ (g8,0,0), (0xFE, 0x9D) ],
[ (g8,-1,1), (0x4F, 0x9B) ],
[ (g8,0,1), (0xFE, 0x62) ],
[ (g16,0,0), (0x1A71, 0xE556) ],
[ (g16,-1,1), (0x1B26, 0xF56E) ],
[ (g16,0,1), (0x14A1, 0xC28D) ],
[ (g24,0,0), (0xBCC49D, 0xC4B507) ],
[ (g24,-1,1), (0x59BD0E, 0x0AAA37) ],
[ (g24,0,1), (0xD52B0F, 0x1523AB) ],
[ (g32,0,0), (0x6B93DDDB, 0x12DCA0F4) ],
[ (g32,0xFFFFFFFFL,1), (0x41FB859FL, 0xF7B400A7L) ],
[ (g32,0,1), (0x6C0695EDL, 0xC1A40EE5L) ],
[ (g32,0,1,0xFFFFFFFF), (0xBE047A60L, 0x084BFF58L) ],
]
def test_known_answers(self):
for crcfun_params, v in self.known_answers:
crcfun = mkCrcFun(*crcfun_params)
self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC parameters %s, input ''" % (crcfun_params,))
for i, msg in enumerate(self.test_messages):
self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
class CompareReferenceCrcTest(unittest.TestCase):
test_messages = [
'',
'T',
'123456789',
'CatMouse987654321',
]
test_poly_crcs = [
[ (g8,0,0), crc8p ],
[ (g16,0,0), crc16p ],
[ (g24,0,0), crc24p ],
[ (g32,0,0), crc32p ],
[ (g64a,0,0), crc64ap ],
[ (g64b,0,0), crc64bp ],
]
@staticmethod
def reference_crc32(d, crc=0):
"""This function modifies the return value of binascii.crc32
to be an unsigned 32-bit value. I.e. in the range 0 to 2**32-1."""
# Work around the future warning on constants.
if crc > 0x7FFFFFFFL:
x = int(crc & 0x7FFFFFFFL)
crc = x | -2147483648
x = binascii.crc32(d,crc)
return long(x) & 0xFFFFFFFFL
def test_compare_crc32(self):
"""The binascii module has a 32-bit CRC function that is used in a wide range
of applications including the checksum used in the ZIP file format.
This test compares the CRC-32 implementation of this crcmod module to
that of binascii.crc32."""
# The following function should produce the same result as
# self.reference_crc32 which is derived from binascii.crc32.
crc32 = mkCrcFun(g32,0,1,0xFFFFFFFF)
for msg in self.test_messages:
self.assertEqual(crc32(msg), self.reference_crc32(msg))
def test_compare_poly(self):
"""Compare various CRCs of this crcmod module to a pure
polynomial-based implementation."""
for crcfun_params, crc_poly_fun in self.test_poly_crcs:
# The following function should produce the same result as
# the associated polynomial CRC function.
crcfun = mkCrcFun(*crcfun_params)
for msg in self.test_messages:
self.assertEqual(crcfun(msg), crc_poly_fun(msg))
class CrcClassTest(unittest.TestCase):
"""Verify the Crc class"""
msg = 'CatMouse987654321'
def test_simple_crc32_class(self):
"""Verify the CRC class when not using xorOut"""
crc = Crc(g32)
str_rep = \
'''poly = 0x104C11DB7
reverse = True
initCrc = 0xFFFFFFFF
xorOut = 0x00000000
crcValue = 0xFFFFFFFF'''
self.assertEqual(str(crc), str_rep)
self.assertEqual(crc.digest(), '\xff\xff\xff\xff')
self.assertEqual(crc.hexdigest(), 'FFFFFFFF')
crc.update(self.msg)
self.assertEqual(crc.crcValue, 0xF7B400A7L)
self.assertEqual(crc.digest(), '\xf7\xb4\x00\xa7')
self.assertEqual(crc.hexdigest(), 'F7B400A7')
# Verify the .copy() method
x = crc.copy()
self.assertTrue(x is not crc)
str_rep = \
'''poly = 0x104C11DB7
reverse = True
initCrc = 0xFFFFFFFF
xorOut = 0x00000000
crcValue = 0xF7B400A7'''
self.assertEqual(str(crc), str_rep)
self.assertEqual(str(x), str_rep)
def test_full_crc32_class(self):
"""Verify the CRC class when using xorOut"""
crc = Crc(g32, initCrc=0, xorOut= ~0L)
str_rep = \
'''poly = 0x104C11DB7
reverse = True
initCrc = 0x00000000
xorOut = 0xFFFFFFFF
crcValue = 0x00000000'''
self.assertEqual(str(crc), str_rep)
self.assertEqual(crc.digest(), '\x00\x00\x00\x00')
self.assertEqual(crc.hexdigest(), '00000000')
crc.update(self.msg)
self.assertEqual(crc.crcValue, 0x84BFF58L)
self.assertEqual(crc.digest(), '\x08\x4b\xff\x58')
self.assertEqual(crc.hexdigest(), '084BFF58')
# Verify the .copy() method
x = crc.copy()
self.assertTrue(x is not crc)
str_rep = \
'''poly = 0x104C11DB7
reverse = True
initCrc = 0x00000000
xorOut = 0xFFFFFFFF
crcValue = 0x084BFF58'''
self.assertEqual(str(crc), str_rep)
self.assertEqual(str(x), str_rep)
# Verify the .new() method
y = crc.new()
self.assertTrue(y is not crc)
self.assertTrue(y is not x)
str_rep = \
'''poly = 0x104C11DB7
reverse = True
initCrc = 0x00000000
xorOut = 0xFFFFFFFF
crcValue = 0x00000000'''
self.assertEqual(str(y), str_rep)
class PredefinedCrcTest(unittest.TestCase):
"""Verify the predefined CRCs"""
test_messages_for_known_answers = [
'', # Test cases below depend on this first entry being the empty string.
'T',
'CatMouse987654321',
]
known_answers = [
[ 'crc-aug-ccitt', (0x1D0F, 0xD6ED, 0x5637) ],
[ 'x-25', (0x0000, 0xE4D9, 0x0A91) ],
[ 'crc-32', (0x00000000, 0xBE047A60, 0x084BFF58) ],
]
def test_known_answers(self):
for crcfun_name, v in self.known_answers:
crcfun = mkPredefinedCrcFun(crcfun_name)
self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC '%s', input ''" % crcfun_name)
for i, msg in enumerate(self.test_messages_for_known_answers):
self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
def test_class_with_known_answers(self):
for crcfun_name, v in self.known_answers:
for i, msg in enumerate(self.test_messages_for_known_answers):
crc1 = PredefinedCrc(crcfun_name)
crc1.update(msg)
self.assertEqual(crc1.crcValue, v[i], "Wrong answer for crc1 %s, input '%s'" % (crcfun_name,msg))
crc2 = crc1.new()
# Check that crc1 maintains its same value, after .new() call.
self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg))
# Check that the new class instance created by .new() contains the initialisation value.
# This depends on the first string in self.test_messages_for_known_answers being
# the empty string.
self.assertEqual(crc2.crcValue, v[0], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg))
crc2.update(msg)
# Check that crc1 maintains its same value, after crc2 has called .update()
self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg))
# Check that crc2 contains the right value after calling .update()
self.assertEqual(crc2.crcValue, v[i], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg))
def test_function_predefined_table(self):
for table_entry in _predefined_crc_definitions:
# Check predefined function
crc_func = mkPredefinedCrcFun(table_entry['name'])
calc_value = crc_func("123456789")
self.assertEqual(calc_value, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name'])
def test_class_predefined_table(self):
for table_entry in _predefined_crc_definitions:
# Check predefined class
crc1 = PredefinedCrc(table_entry['name'])
crc1.update("123456789")
self.assertEqual(crc1.crcValue, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name'])
def runtests():
print "Using extension:", _usingExtension
print
unittest.main()
if __name__ == '__main__':
runtests()