-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodels.py
79 lines (60 loc) · 3.86 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from basic_blocks import BinaryBasicBlock, ParallelBinaryBasicBlockWithSqueeze, ParallelBinaryBasicBlockNoSqueeze, ParallelBinaryBasicBlockWithFusionGate
from resnet import ResNet, ReIdResNet
from utils import load_weights
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnet18-duke': 'https://github.com/wonnado/binary-nets/blob/master/pretrained_models/resnet18_duke-0a916429.pth.tar?raw=true'
}
def binary_resnet18(pretrained='imagenet', **kwargs): # paper, page 5, fig. 1(b)
model = ResNet(BinaryBasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def parallel_resnet18_no_squeeze(pretrained='imagenet', **kwargs): # paper, page 5, fig. 2 (c)
model = ResNet(ParallelBinaryBasicBlockNoSqueeze, [2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def parallel_resnet18_with_squeeze(pretrained='imagenet', **kwargs): # paper, page 5, fig. 2 (b)
model = ResNet(ParallelBinaryBasicBlockWithSqueeze, [2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def parallel_resnet18_with_fusion_gate(pretrained='imagenet', **kwargs): # paper, page 6, fig. 3
model = ResNet(ParallelBinaryBasicBlockWithFusionGate, [2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def reid_binary_resnet18(loss, num_classes, pretrained='imagenet', **kwargs): # paper, page 5, fig. 1(b)
model = ReIdResNet(loss=loss, num_classes=num_classes, block=BinaryBasicBlock, layers=[2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def reid_parallel_resnet18_no_squeeze(loss, num_classes, pretrained='imagenet', **kwargs): # paper, page 5, fig. 2 (c)
model = ReIdResNet(loss=loss, num_classes=num_classes, block=ParallelBinaryBasicBlockNoSqueeze, layers=[2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def reid_parallel_resnet18_with_squeeze(loss, num_classes, pretrained='imagenet', **kwargs): # paper, page 5, fig. 2 (b)
model = ReIdResNet(loss=loss, num_classes=num_classes, block=ParallelBinaryBasicBlockWithSqueeze, layers=[2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
return model
def reid_parallel_resnet18_with_fusion_gate(loss, num_classes, pretrained='imagenet', **kwargs): # paper, page 6, fig. 3
model = ReIdResNet(loss=loss, num_classes=num_classes, block=ParallelBinaryBasicBlockWithFusionGate, layers=[2, 2, 2, 2], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
elif pretrained == 'duke':
load_weights(model, model_urls['resnet18-duke'], partial=True)
return model
def reid_parallel_resnet18_with_fusion_gate_fc(loss, num_classes, pretrained='imagenet', **kwargs): # paper, page 6, fig. 3
model = ReIdResNet(loss=loss, num_classes=num_classes, block=ParallelBinaryBasicBlockWithFusionGate, layers=[2, 2, 2, 2], fc_dims=[512], **kwargs)
if pretrained == 'imagenet':
load_weights(model, model_urls['resnet18'], partial=True)
elif pretrained == 'duke':
load_weights(model, model_urls['resnet18-duke'], partial=True)
return model