-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmodel.py
542 lines (448 loc) · 20.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class RewardCriterion(nn.Module):
def __init__(self):
super(RewardCriterion, self).__init__()
def forward(self, seq, logprobs, reward):
# import pdb; pdb.set_trace()
logprobs = to_contiguous(logprobs).view(-1)
reward = to_contiguous(reward).view(-1)
mask = (seq > 0).float()
# add one to the right to count for the <eos> token
mask = to_contiguous(torch.cat(
[mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1)).view(-1)
#import pdb; pdb.set_trace()
output = - logprobs * reward * Variable(mask)
output = torch.sum(output) / torch.sum(mask)
return output
class CrossEntropyCriterion(nn.Module):
def __init__(self):
super(CrossEntropyCriterion, self).__init__()
def forward(self, pred, target, mask):
# truncate to the same size
target = target[:, :pred.size(1)]
mask = mask[:, :pred.size(1)]
pred = to_contiguous(pred).view(-1, pred.size(2))
target = to_contiguous(target).view(-1, 1)
mask = to_contiguous(mask).view(-1, 1)
output = -pred.gather(1, target) * mask
output = torch.sum(output) / torch.sum(mask)
return output
class FeatPool(nn.Module):
def __init__(self, feat_dims, out_size, dropout):
super(FeatPool, self).__init__()
module_list = []
for dim in feat_dims:
module = nn.Sequential(
nn.Linear(
dim,
out_size),
nn.ReLU(),
nn.Dropout(dropout))
module_list += [module]
self.feat_list = nn.ModuleList(module_list)
# self.embed = nn.Sequential(nn.Linear(sum(feat_dims), out_size), nn.ReLU(), nn.Dropout(dropout))
def forward(self, feats):
"""
feats is a list, each element is a tensor that have size (N x C x F)
at the moment assuming that C == 1
"""
out = torch.cat([m(feats[i].squeeze(1))
for i, m in enumerate(self.feat_list)], 1)
# pdb.set_trace()
# out = self.embed(torch.cat(feats, 2).squeeze(1))
return out
class FeatExpander(nn.Module):
def __init__(self, n=1):
super(FeatExpander, self).__init__()
self.n = n
def forward(self, x):
if self.n == 1:
out = x
else:
out = Variable(
x.data.new(
self.n * x.size(0),
x.size(1)),
volatile=x.volatile)
for i in range(x.size(0)):
out[i * self.n:(i + 1) *
self.n] = x[i].expand(self.n, x.size(1))
return out
def set_n(self, x):
self.n = x
class RNNUnit(nn.Module):
def __init__(self, opt):
super(RNNUnit, self).__init__()
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
if opt.model_type == 'standard':
self.input_size = opt.input_encoding_size
elif opt.model_type in ['concat', 'manet']:
self.input_size = opt.input_encoding_size + opt.video_encoding_size
self.rnn = getattr(
nn,
self.rnn_type.upper())(
self.input_size,
self.rnn_size,
self.num_layers,
bias=False,
dropout=self.drop_prob_lm)
def forward(self, xt, state):
output, state = self.rnn(xt.unsqueeze(0), state)
return output.squeeze(0), state
class MANet(nn.Module):
"""
MANet: Modal Attention
"""
def __init__(self, video_encoding_size, rnn_size, num_feats):
super(MANet, self).__init__()
self.video_encoding_size = video_encoding_size
self.rnn_size = rnn_size
self.num_feats = num_feats
self.f_feat_m = nn.Linear(self.video_encoding_size, self.num_feats)
self.f_h_m = nn.Linear(self.rnn_size, self.num_feats)
self.align_m = nn.Linear(self.num_feats, self.num_feats)
def forward(self, x, h):
f_feat = self.f_feat_m(x)
f_h = self.f_h_m(h.squeeze(0)) # assuming now num_layers is 1
att_weight = nn.Softmax()(self.align_m(nn.Tanh()(f_feat + f_h)))
att_weight = att_weight.unsqueeze(2).expand(
x.size(0), self.num_feats, self.video_encoding_size / self.num_feats)
att_weight = att_weight.contiguous().view(x.size(0), x.size(1))
return x * att_weight
class CaptionModel(nn.Module):
"""
A baseline captioning model
"""
def __init__(self, opt):
super(CaptionModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = opt.seq_length
self.feat_dims = opt.feat_dims
self.num_feats = len(self.feat_dims)
self.seq_per_img = opt.train_seq_per_img
self.model_type = opt.model_type
self.bos_index = 1 # index of the <bos> token
self.ss_prob = 0
self.mixer_from = 0
self.embed = nn.Embedding(self.vocab_size, self.input_encoding_size)
self.logit = nn.Linear(self.rnn_size, self.vocab_size)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.init_weights()
self.feat_pool = FeatPool(
self.feat_dims,
self.num_layers *
self.rnn_size,
self.drop_prob_lm)
self.feat_expander = FeatExpander(self.seq_per_img)
self.video_encoding_size = self.num_feats * self.num_layers * self.rnn_size
opt.video_encoding_size = self.video_encoding_size
self.core = RNNUnit(opt)
if self.model_type == 'manet':
self.manet = MANet(
self.video_encoding_size,
self.rnn_size,
self.num_feats)
def set_ss_prob(self, p):
self.ss_prob = p
def set_mixer_from(self, t):
"""Set values of mixer_from
if mixer_from > 0 then start MIXER training
i.e:
from t = 0 -> t = mixer_from -1: use XE training
from t = mixer_from -> end: use RL training
"""
self.mixer_from = t
def set_seq_per_img(self, x):
self.seq_per_img = x
self.feat_expander.set_n(x)
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
def init_hidden(self, batch_size):
weight = next(self.parameters()).data
if self.rnn_type == 'lstm':
return (
Variable(
weight.new(
self.num_layers,
batch_size,
self.rnn_size).zero_()),
Variable(
weight.new(
self.num_layers,
batch_size,
self.rnn_size).zero_()))
else:
return Variable(
weight.new(
self.num_layers,
batch_size,
self.rnn_size).zero_())
def forward(self, feats, seq):
fc_feats = self.feat_pool(feats)
fc_feats = self.feat_expander(fc_feats)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
outputs = []
sample_seq = []
sample_logprobs = []
# -- if <image feature> is input at the first step, use index -1
# -- the <eos> token is not used for training
start_i = -1 if self.model_type == 'standard' else 0
end_i = seq.size(1) - 1
for token_idx in range(start_i, end_i):
if token_idx == -1:
xt = fc_feats
else:
# token_idx = 0 corresponding to the <BOS> token
# (already encoded in seq)
if self.training and token_idx >= 1 and self.ss_prob > 0.0:
sample_prob = fc_feats.data.new(batch_size).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, token_idx].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, token_idx].data.clone()
# fetch prev distribution: shape Nx(M+1)
prob_prev = torch.exp(outputs[-1].data)
sample_ind_tokens = torch.multinomial(
prob_prev, 1).view(-1).index_select(0, sample_ind)
it.index_copy_(0, sample_ind, sample_ind_tokens)
it = Variable(it, requires_grad=False)
elif self.training and self.mixer_from > 0 and token_idx >= self.mixer_from:
prob_prev = torch.exp(outputs[-1].data)
it = torch.multinomial(prob_prev, 1).view(-1)
it = Variable(it, requires_grad=False)
else:
it = seq[:, token_idx].clone()
if token_idx >= 1:
# store the seq and its logprobs
sample_seq.append(it.data)
logprobs = outputs[-1].gather(1, it.unsqueeze(1))
sample_logprobs.append(logprobs.view(-1))
# break if all the sequences end, which requires EOS token = 0
if it.data.sum() == 0:
break
xt = self.embed(it)
if self.model_type == 'standard':
output, state = self.core(xt, state)
else:
if self.model_type == 'manet':
fc_feats = self.manet(fc_feats, state[0])
output, state = self.core(torch.cat([xt, fc_feats], 1), state)
if token_idx >= 0:
output = F.log_softmax(self.logit(self.dropout(output)))
outputs.append(output)
# only returns outputs of seq input
# output size is: B x L x V (where L is truncated lengths
# which are different for different batch)
return torch.cat([_.unsqueeze(1) for _ in outputs], 1), \
torch.cat([_.unsqueeze(1) for _ in sample_seq], 1), \
torch.cat([_.unsqueeze(1) for _ in sample_logprobs], 1) \
def sample(self, feats, opt={}):
sample_max = opt.get('sample_max', 1)
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
expand_feat = opt.get('expand_feat', 0)
if beam_size > 1:
return self.sample_beam(feats, opt)
fc_feats = self.feat_pool(feats)
if expand_feat == 1:
fc_feats = self.feat_expander(fc_feats)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
seq = []
seqLogprobs = []
unfinished = fc_feats.data.new(batch_size).fill_(1).byte()
# -- if <image feature> is input at the first step, use index -1
start_i = -1 if self.model_type == 'standard' else 0
end_i = self.seq_length - 1
for token_idx in range(start_i, end_i):
if token_idx == -1:
xt = fc_feats
else:
if token_idx == 0: # input <bos>
it = fc_feats.data.new(
batch_size).long().fill_(self.bos_index)
elif sample_max == 1:
# output here is a Tensor, because we don't use backprop
sampleLogprobs, it = torch.max(logprobs.data, 1)
it = it.view(-1).long()
else:
if temperature == 1.0:
# fetch prev distribution: shape Nx(M+1)
prob_prev = torch.exp(logprobs.data).cpu()
else:
# scale logprobs by temperature
prob_prev = torch.exp(
torch.div(
logprobs.data,
temperature)).cpu()
#import pdb; pdb.set_trace()
it = torch.multinomial(prob_prev, 1).cuda()
# gather the logprobs at sampled positions
sampleLogprobs = logprobs.gather(
1, Variable(it, requires_grad=False))
# and flatten indices for downstream processing
it = it.view(-1).long()
xt = self.embed(Variable(it, requires_grad=False))
if token_idx >= 1:
unfinished = unfinished * (it > 0)
#
it = it * unfinished.type_as(it)
seq.append(it)
seqLogprobs.append(sampleLogprobs.view(-1))
# requires EOS token = 0
if unfinished.sum() == 0:
break
if self.model_type == 'standard':
output, state = self.core(xt, state)
else:
if self.model_type == 'manet':
fc_feats = self.manet(fc_feats, state[0])
output, state = self.core(torch.cat([xt, fc_feats], 1), state)
logprobs = F.log_softmax(self.logit(output))
return torch.cat([_.unsqueeze(1) for _ in seq], 1), torch.cat(
[_.unsqueeze(1) for _ in seqLogprobs], 1)
def sample_beam(self, feats, opt={}):
"""
modified from https://github.com/ruotianluo/self-critical.pytorch
"""
beam_size = opt.get('beam_size', 5)
fc_feats = self.feat_pool(feats)
batch_size = fc_feats.size(0)
seq = torch.LongTensor(self.seq_length, batch_size).zero_()
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# lets process every image independently for now, for simplicity
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
fc_feats_k = fc_feats[k].expand(
beam_size, self.video_encoding_size)
beam_seq = torch.LongTensor(self.seq_length, beam_size).zero_()
beam_seq_logprobs = torch.FloatTensor(
self.seq_length, beam_size).zero_()
# running sum of logprobs for each beam
beam_logprobs_sum = torch.zeros(beam_size)
# -- if <image feature> is input at the first step, use index -1
start_i = -1 if self.model_type == 'standard' else 0
end_i = self.seq_length - 1
for token_idx in range(start_i, end_i):
if token_idx == -1:
xt = fc_feats_k
elif token_idx == 0: # input <bos>
it = fc_feats.data.new(
beam_size).long().fill_(self.bos_index)
xt = self.embed(Variable(it, requires_grad=False))
else:
"""perform a beam merge. that is,
for every previous beam we now many new possibilities to branch out
we need to resort our beams to maintain the loop invariant of keeping
the top beam_size most likely sequences."""
logprobsf = logprobs.float() # lets go to CPU for more efficiency in indexing operations
# sorted array of logprobs along each previous beam (last
# true = descending)
ys, ix = torch.sort(logprobsf, 1, True)
candidates = []
cols = min(beam_size, ys.size(1))
rows = beam_size
if token_idx == 1: # at first time step only the first beam is active
rows = 1
for c in range(cols):
for q in range(rows):
# compute logprob of expanding beam q with word in
# (sorted) position c
local_logprob = ys[q, c]
candidate_logprob = beam_logprobs_sum[
q] + local_logprob
candidates.append({'c': ix.data[q, c], 'q': q, 'p': candidate_logprob.data[
0], 'r': local_logprob.data[0]})
candidates = sorted(candidates, key=lambda x: -x['p'])
# construct new beams
new_state = [_.clone() for _ in state]
if token_idx > 1:
# well need these as reference when we fork beams
# around
beam_seq_prev = beam_seq[:token_idx - 1].clone()
beam_seq_logprobs_prev = beam_seq_logprobs[
:token_idx - 1].clone()
for vix in range(beam_size):
v = candidates[vix]
# fork beam index q into index vix
if token_idx > 1:
beam_seq[
:token_idx - 1,
vix] = beam_seq_prev[
:,
v['q']]
beam_seq_logprobs[
:token_idx - 1,
vix] = beam_seq_logprobs_prev[
:,
v['q']]
# rearrange recurrent states
for state_ix in range(len(new_state)):
# copy over state in previous beam q to new beam at
# vix
new_state[state_ix][
0, vix] = state[state_ix][
0, v['q']] # dimension one is time step
# append new end terminal at the end of this beam
# c'th word is the continuation
beam_seq[token_idx - 1, vix] = v['c']
beam_seq_logprobs[
token_idx - 1, vix] = v['r'] # the raw logprob here
# the new (sum) logprob along this beam
beam_logprobs_sum[vix] = v['p']
if v['c'] == 0 or token_idx == self.seq_length - 2:
# END token special case here, or we reached the end.
# add the beam to a set of done beams
if token_idx > 1:
ppl = np.exp(-beam_logprobs_sum[vix] / (token_idx - 1))
else:
ppl = 10000
self.done_beams[k].append({'seq': beam_seq[:, vix].clone(),
'logps': beam_seq_logprobs[:, vix].clone(),
'p': beam_logprobs_sum[vix],
'ppl': ppl
})
# encode as vectors
it = beam_seq[token_idx - 1]
xt = self.embed(Variable(it.cuda()))
if token_idx >= 1:
state = new_state
if self.model_type == 'standard':
output, state = self.core(xt, state)
else:
if self.model_type == 'manet':
fc_feats_k = self.manet(fc_feats_k, state[0])
output, state = self.core(
torch.cat([xt, fc_feats_k], 1), state)
logprobs = F.log_softmax(self.logit(output))
#self.done_beams[k] = sorted(self.done_beams[k], key=lambda x: -x['p'])
self.done_beams[k] = sorted(
self.done_beams[k], key=lambda x: x['ppl'])
# the first beam has highest cumulative score
seq[:, k] = self.done_beams[k][0]['seq']
seqLogprobs[:, k] = self.done_beams[k][0]['logps']
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)