-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdataloader.py
223 lines (172 loc) · 7.21 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import print_function
import torch
import json
import h5py
import os
import numpy as np
import random
import time
import cPickle
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
class DataLoader():
"""Class to load video features and captions"""
def __init__(self, opt):
self.iterator = 0
self.epoch = 0
self.batch_size = opt.get('batch_size', 128)
self.seq_per_img = opt.get('seq_per_img', 1)
self.word_embedding_size = opt.get('word_embedding_size', 512)
self.num_chunks = opt.get('num_chunks', 1)
self.mode = opt.get('mode', 'train')
self.cocofmt_file = opt.get('cocofmt_file', None)
self.bcmrscores_pkl = opt.get('bcmrscores_pkl', None)
# open the hdf5 info file
logger.info('DataLoader loading h5 file: %s', opt['label_h5'])
self.label_h5 = h5py.File(opt['label_h5'], 'r')
self.vocab = [i for i in self.label_h5['vocab']]
self.videos = [i for i in self.label_h5['videos']]
self.ix_to_word = {i: w for i, w in enumerate(self.vocab)}
self.num_videos = len(self.videos)
self.index = range(self.num_videos)
# load the json file which contains additional information about the
# dataset
feat_h5_files = opt['feat_h5']
logger.info('DataLoader loading h5 files: %s', feat_h5_files)
self.feat_h5 = []
self.feat_dims = []
for ii, feat_h5_file in enumerate(feat_h5_files):
self.feat_h5.append(h5py.File(feat_h5_files[ii], 'r'))
self.feat_dims.append(self.feat_h5[ii][self.videos[0]].shape[0])
self.num_feats = len(feat_h5_files)
# load in the sequence data
if 'labels' in self.label_h5.keys():
self.seq_length = self.label_h5['labels'].shape[1]
logger.info('max sequence length in data is: %d', self.seq_length)
# load the pointers in full to RAM (should be small enough)
self.label_start_ix = self.label_h5['label_start_ix']
self.label_end_ix = self.label_h5['label_end_ix']
assert(self.label_start_ix.shape[0] == self.label_end_ix.shape[0])
self.has_label = True
else:
self.has_label = False
if self.bcmrscores_pkl is not None:
eval_metric = opt.get('eval_metric', 'CIDEr')
logger.info('Loading: %s, with metric: %s', self.bcmrscores_pkl, eval_metric)
self.bcmrscores = cPickle.load(open(self.bcmrscores_pkl))
if eval_metric == 'CIDEr' and eval_metric not in self.bcmrscores:
eval_metric = 'cider'
self.bcmrscores = self.bcmrscores[eval_metric]
if self.mode == 'train':
self.shuffle_videos()
def __del__(self):
for f in self.feat_h5:
f.close()
self.label_h5.close()
def get_batch(self):
video_batch = []
for dim in self.feat_dims:
feat = torch.FloatTensor(
self.batch_size, self.num_chunks, dim).zero_()
video_batch.append(feat)
if self.has_label:
label_batch = torch.LongTensor(
self.batch_size * self.seq_per_img,
self.seq_length).zero_()
mask_batch = torch.FloatTensor(
self.batch_size * self.seq_per_img,
self.seq_length).zero_()
videoids_batch = []
gts = []
bcmrscores = np.zeros((self.batch_size, self.seq_per_img)) if self.bcmrscores_pkl is not None else None
for ii in range(self.batch_size):
idx = self.index[self.iterator]
video_id = int(self.videos[idx])
videoids_batch.append(video_id)
for jj in range(self.num_feats):
video_batch[jj][ii] = torch.from_numpy(
np.array(self.feat_h5[jj][str(video_id)]))
if self.has_label:
# fetch the sequence labels
ix1 = self.label_start_ix[idx]
ix2 = self.label_end_ix[idx]
ncap = ix2 - ix1 # number of captions available for this image
assert ncap > 0, 'No captions!!'
seq = torch.LongTensor(
self.seq_per_img, self.seq_length).zero_()
seq_all = torch.from_numpy(
np.array(self.label_h5['labels'][ix1:ix2]))
if ncap <= self.seq_per_img:
seq[:ncap] = seq_all[:ncap]
for q in range(ncap, self.seq_per_img):
ixl = np.random.randint(ncap)
seq[q] = seq_all[ixl]
else:
randpos = torch.randperm(ncap)
for q in range(self.seq_per_img):
ixl = randpos[q]
seq[q] = seq_all[ixl]
il = ii * self.seq_per_img
label_batch[il:il + self.seq_per_img] = seq
# Used for reward evaluation
gts.append(
self.label_h5['labels'][
self.label_start_ix[idx]: self.label_end_ix[idx]])
# pre-computed cider scores,
# assuming now that videos order are same (which is the sorted videos order)
if self.bcmrscores_pkl is not None:
bcmrscores[ii] = self.bcmrscores[idx]
self.iterator += 1
if self.iterator >= self.num_videos:
logger.info('===> Finished loading epoch %d', self.epoch)
self.iterator = 0
self.epoch += 1
if self.mode == 'train':
self.shuffle_videos()
data = {}
data['feats'] = video_batch
data['ids'] = videoids_batch
if self.has_label:
# + 1 here to count the <eos> token, because the <eos> token is set to 0
nonzeros = np.array(
list(map(lambda x: (x != 0).sum() + 1, label_batch)))
for ix, row in enumerate(mask_batch):
row[:nonzeros[ix]] = 1
data['labels'] = label_batch
data['masks'] = mask_batch
data['gts'] = gts
data['bcmrscores'] = bcmrscores
return data
def reset(self):
self.iterator = 0
def get_current_index(self):
return self.iterator
def set_current_index(self, index):
self.iterator = index
def get_vocab(self):
return self.ix_to_word
def get_vocab_size(self):
return len(self.vocab)
def get_feat_dims(self):
return self.feat_dims
def get_feat_size(self):
return sum(self.feat_dims)
def get_num_feats(self):
return self.num_feats
def get_seq_length(self):
return self.seq_length
def get_seq_per_img(self):
return self.seq_per_img
def get_num_videos(self):
return self.num_videos
def get_batch_size(self):
return self.batch_size
def get_current_epoch(self):
return self.epoch
def set_current_epoch(self, epoch):
self.epoch = epoch
def shuffle_videos(self):
np.random.shuffle(self.index)
def get_cocofmt_file(self):
return self.cocofmt_file