Windows Linux
pip install uc
- 支持特征重要性
- 支持缺失值
- 支持am2/am2l/a2m2/a2m2l激活函数
- 支持softmax/hardmax/mse/hardmse损失函数
- 支持fc/add/conv运算
# let's use a simple example to learn how to use from uc.mlp import MLP import numpy as np # generate sample X = np.linspace(-np.pi, np.pi, num=5000).reshape(-1, 1) Y = np.sin(X) print(X.shape, Y.shape) # fit and predict mlp = MLP(layer_size=[X.shape[1], 8, 8, 8, 1], rate_init=0.02, loss_type="mse", epoch_train=100, epoch_decay=10, verbose=1) mlp.fit(X, Y) pred = mlp.predict(X) # show the result import matplotlib.pyplot as plt plt.plot(X, pred) plt.show()