forked from rykov8/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathdata_voc.py
155 lines (142 loc) · 5.04 KB
/
data_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import os
from xml.etree import ElementTree
from ssd_data import BaseGTUtility
class GTUtility(BaseGTUtility):
"""Utility for PASCAL VOC (Visual Object Classes) dataset.
# Arguments
data_path: Path to ground truth and image data.
"""
def __init__(self, data_path):
self.data_path = data_path
self.image_path = os.path.join(data_path, 'JPEGImages')
self.gt_path = gt_path = os.path.join(self.data_path, 'Annotations')
self.classes = ['Background',
'Aeroplane', 'Bicycle', 'Bird', 'Boat', 'Bottle',
'Bus', 'Car', 'Cat', 'Chair', 'Cow', 'Diningtable',
'Dog', 'Horse','Motorbike', 'Person', 'Pottedplant',
'Sheep', 'Sofa', 'Train', 'Tvmonitor']
classes_lower = [s.lower() for s in self.classes]
self.image_names = []
self.data = []
for filename in os.listdir(gt_path):
tree = ElementTree.parse(os.path.join(gt_path, filename))
root = tree.getroot()
boxes = []
size_tree = root.find('size')
img_width = float(size_tree.find('width').text)
img_height = float(size_tree.find('height').text)
image_name = root.find('filename').text
for object_tree in root.findall('object'):
class_name = object_tree.find('name').text
class_idx = classes_lower.index(class_name)
for box in object_tree.iter('bndbox'):
xmin = float(box.find('xmin').text) / img_width
ymin = float(box.find('ymin').text) / img_height
xmax = float(box.find('xmax').text) / img_width
ymax = float(box.find('ymax').text) / img_height
box = [xmin, ymin, xmax, ymax, class_idx]
boxes.append(box)
boxes = np.asarray(boxes)
self.image_names.append(image_name)
self.data.append(boxes)
self.init()
def convert_to_coco(self):
coco_classes = [
'Background',
'person',
'bicycle',
'car',
'motorcycle',
'airplane',
'bus',
'train',
'truck',
'boat',
'traffic light',
'fire hydrant',
'stop sign',
'parking meter',
'bench',
'bird',
'cat',
'dog',
'horse',
'sheep',
'cow',
'elephant',
'bear',
'zebra',
'giraffe',
'backpack',
'umbrella',
'handbag',
'tie',
'suitcase',
'frisbee',
'skis',
'snowboard',
'sports ball',
'kite',
'baseball bat',
'baseball glove',
'skateboard',
'surfboard',
'tennis racket',
'bottle',
'wine glass',
'cup',
'fork',
'knife',
'spoon',
'bowl',
'banana',
'apple',
'sandwich',
'orange',
'broccoli',
'carrot',
'hot dog',
'pizza',
'donut',
'cake',
'chair',
'couch',
'potted plant',
'bed',
'dining table',
'toilet',
'tv',
'laptop',
'mouse',
'remote',
'keyboard',
'cell phone',
'microwave',
'oven',
'toaster',
'sink',
'refrigerator',
'book',
'clock',
'vase',
'scissors',
'teddy bear',
'hair drier',
'toothbrush',
]
# only for classes with different names
voc_to_coco_map = [
['aeroplane', 'airplane', ],
['diningtable', 'dining table', ],
['motorbike', 'motorcycle', ],
['pottedplant', 'potted plant', ],
['sofa', 'couch', ],
['tvmonitor', 'tv', ],
]
return self.convert(coco_classes, voc_to_coco_map)
if __name__ == '__main__':
gt_util = GTUtility('data/VOC2007')
print(gt_util.classes)
gt = gt_util.data
print(gt)